How to Smoke Weed: A Beginner’s Guide

In case you’re interested..JK Simmons Smoking Weed

When first smoking, feel free to giggle your ass off and gorge on Oreos. But please, if you continue, learn some dignity.

The decidedly uphill battle to legalize marijuana, medical or otherwise, is likely to be with us for decades to come. Legislating morality in our country (and in human societies down through the ages) has always been fraught. As we have seen, even if marijuana is legal in some localities, that doesn’t mean the feds won’t shut down licensed operations, as I discovered woefully when the owners of my own dear collective in Malibu, California, were forced to pack up and flee after receiving a threatening letter from Obama’s U.S. Attorney General’s office. (Has anyone looked into the reason for our seemingly liberal president’s hard line on pot? Do you think it has something to do with being a father of teenage daughters who attend a pricey prep school in Washington, D.C.? Everybody knows how hardy those rich preppies like to party.)

Meanwhile, glassy eyes around the nation are turned toward Colorado’s legalization experiment. Given the choice between a drunk (and impaired) asshole and a pleasant stoner… Well, put it this way: If my college-bound kid was to ask my advice on the subject, I’d tell him I prefer he smoked weed in lieu of drinking. Watch one episode of Real World. That’s what our kids are emulating, people. (Of course I’d also tell him to watch his butt — people still get busted for simple marijuana possession every day in America.)

There’s not a lot to know to get you started, and I am not here advocating the use of illegal substances. But if you happen to be interested…

1. Indica vs. Sativa

Learn the difference. Indica makes you sleepy; it’s more of a body high, good for pain, anxiety, and difficulty sleeping — you’ll likely nod out a couple hours after smoking. Sativa is a more upbeat, artistic, and cerebral high. It sparks the imagination and energizes you directly after smoking and will keep you awake if you smoke too close to bedtime. Most stoners remember the difference in a somewhat anti-intuitive way. Sativa starts with an S = NOT sleepy.

2. Just Say No to Blunts

The hip-hop generation has popularized the use of tobacco leaf rolling papers or hollowed-out/re-rolled Swisher Sweets as the delivery device of choice for weed. Not only can this lead to an addiction to nicotine (every heroin user I’ve ever known agrees that nicotine is the hardest drug to kick). It also kills the taste of the myriad delicious strains now on the market. Nobody would ever mix a shot of red wine in a glass with ice and Coke, would they? [Eds. note: Okay, we sometimes do that.]

3. Know Your Equipment

Some people swear by vaporizers, which eliminate the intense skunky smell (good for dorm rooms and public spots) and the inhalation of smoke (possibly but not medically proven to adversely affect the lungs). However, the vape high is considerably less intense and shorter lasting. While a bong can be unruly and downright disgusting, a small water pipe can fulfill the same purpose, filtering the more noxious elements of combustion. For cleaning, isopropyl alcohol cuts resin nicely. Remember the container full of combs soaking in blue liquid on the barber’s counter? I do the same with my glass pipes.

4. Giggling Man is an Oxymoron

The first time you smoke, feel free to giggle your ass off, munch down on Double Stuf Oreos and barbecue potato chips, and marvel at the new found intensity of movies, music, sex, et al. The primary effect of weed is to enhance the sensory enjoyment of everything around you. But please, if you continue to smoke, learn some dignity. Conquer the munchies and the giggles. Concentrate instead on these newly opened doors of perception.

5. Expectations

If pot makes you feel paranoid, it’s because it affords the user a slightly different view of him or herself. When you’re high, your words echo discreetly in your own coconut, your point of view is slightly off center from normal, affording you a kind of fleeting glimpse of yourself and your actions that you might not ordinarily have. Weed invites self-observation, which is not for everyone. Even though it should be.

Father And Son Find Mysterious Sphere Floating Off Australian Coast

When Mark Watkins headed out for a fishing trip off the coast of Western Australia, he’d hoped to come home with dinner. Instead, he came home with one heck of a story.

That’s because, as he and his father drove their boat through the choppy morning waves, they happened upon an amazingly bizarre sight. At first they thought it was a boat, then, a hot air balloon. The truth, however, was even crazier.

When they first spotted it floating above the waves, Mark Watkins and his father thought it was an overturned boat. As they got closer they thought perhaps it was a hot air balloon. Then they realized the truth.

Facebook / Mark Watkins

Vector Space Systems aims to launch satellites by the hundreds

Devin Coldewey

8M0I6865 - P-9 in flight

Why wait for the bus when you can hail a cab? That’s the idea behind a new commercial spaceflight startup founded by SpaceX founding team members Jim Cantrell and John Garvey. Vector Space Systems wants to shake up to the commercial space market by providing not tens, but hundreds of launches per year.

Vector Space-logo-black“We’re going to bring real economics to the launch platform,” Cantrell told TechCrunch in an interview. “And we can do that because we bring supply. We’re talking about building hundreds of these things.”

Vector isn’t looking to compete with SpaceX, or even smaller commercial launch platforms like Rocket Lab and Firefly. A launch with these companies might be booked years in advance, with dozens of sub-launches, deliveries, experiments, and what have you packed into a single rocket. It’s like a space bus. Vector wants to be the space taxi.

“I had this experience pounded into my brain with LightSail,” said Cantrell, referring to the Planetary Society’s experimental solar propulsion craft. “We built that thing — I think we finished in 2011 — and it’s still waiting around for launch, because you need a particular orbit and so on. And really nobody has addressed this problem.”

With small rockets carrying single 20-40 kg payloads launching weekly or even every few days, the company can be flexible with both prices and timetables. Such small satellites are a growing business: 175 were launched in 2015 alone, and there’s plenty of room to grow. It’ll still be expensive, of course, and you won’t be able to just buy a Thursday afternoon express ticket to low earth orbit — yet.

Customers will, however, reap other benefits. There are less restrictions on space: no more having to package your satellite or craft into a launch container so it fits into a slot inside a crowded space bus. Less of a wait between build and launch means hardware can be finalized weeks, not years, in advance — and expensive satellites aren’t sitting in warehouses waiting for their turn to go live and get that sweet return on investment.

The last few years have been spent on designing and testing the as-yet-unnamed launch vehicles Vector will be using. The first stage is designed to be reusable — nothing as fancy as SpaceX’s autonomous landings, but rather using a unique aerial recovery system Cantrell seemed excited (though guarded) about.

rockettest

rockettest

Dozens of sub-orbital flights have been made, and orbital deployment is the next test. If all goes well, Vector hopes to be making its first real flights in 2017.

Investors are knocking down the front door looking to get in, he said, though he declined to name any. Perhaps they smell profitability: Vector’s business plan has it cash positive after just a few launches. Government money is also in the mix: Cantrell noted humbly that “We’ve been talking with people high up at the Pentagon who want this for obvious reasons.”

A lot depends on successful demonstration of orbital deployment, which should be happening a little later this year. If things go as planned, it could work towards removing one of the most significant restraints currently holding back commercial spaceflight.


Bound for Mars, a robot arrives in Boston for training

Valkyrie, NASA’s humanoid robot prototype that Northeastern researchers will perform advanced research and development on, arrived at UMass Lowell on April 6.
Valkyrie, NASA’s humanoid robot prototype that Northeastern researchers will perform advanced research and development on, arrived at UMass Lowell on April 6.

ASTRONAUTS SPEND YEARS training before they go into space. The same is true for their robot counterparts, two of which recently arrived in Massachusetts to be put through their paces in preparation for a long-off mission to Mars.

Valkyrie is built like a linebacker — 6’2” tall and 275 pounds. Its job is to go to Mars and maintain equipment in anticipation of the arrival of astronauts, potentially years after Valkyrie first touches down on the Red Planet.

“If you don’t start your car for two years, do you expect it will start when you return?” says Taskin Padir, a professor of engineering at Northeastern University who will be leading the university’s work with Valkyrie. “Humanoid robots will be part of the pre-deployment mission to Mars and will maintain equipment prior to the astronauts’ arrival.”

A manned mission to Mars is a high priority for NASA, which hopes to achieve the feat by the 2030s. As conceived, the expedition would require NASA to send equipment like rovers and a human habitat to Mars years before the astronauts launch. This is due to the relative orbits of Earth and Mars, which make it only practical to launch from here to there every two years.

“You need to pre-position assets like a habitat, a power supply. Whatever you need on the surface, all that’s done years before an astronaut gets there,” says William Verdeyen, NASA project manager for Valkyrie.

Valkyrie’s destination may be exotic, but the robot’s tasks will be mundane. The Johnson Space Center in Houston will beam instructions to Mars (the transmission takes about 20 minutes), and the robot will carry them out autonomously. Likely jobs include repairing electronic boards, cutting cords, and changing batteries — all maneuvers that require dexterity, which is complicated to engineer.

“A [good] analogy is replacing batteries in a flashlight,” says Padir. “If we can do that with Valkyrie at the end of two years, that would be a great accomplishment from our perspective.”

Over the next two years, the Northeastern team will work on improving Valkyrie’s performance, especially at these kinds of fine-motor maintenance tasks. A separate team at MIT will be doing similar work with another copy of the robot.

Most of Valkyrie’s movements will take place inside the human habitat — a known environment for the engineers, which makes it relatively easy to navigate. Sometimes, though, the robot will have to venture outside, like to brush dust off of solar panels. There, things get more treacherous. And if Valkyrie falls on the rough, uneven Martian surface, there’s always the risk it will never be able to get back up. Fortunately, though, in all these tasks, time is going to be on Valkyrie’s side.

“This robot will have a lot of free time on Mars,” says Padir. “If your task is to clean a few solar panels in the next week, you don’t have to run.”

 

NASA invests $67 million into solar electric propulsion for deep space exploration

Emily Calandrelli (@TheSpaceGal)

NASA has selected Aerojet Rocketdyne for a $67 million contract to develop an advanced Solar Electric Propulsion (SEP) system for future deep-space missions.

In a press release, NASA stated that the propulsion system could be used on robotic missions to an asteroid and in other missions related to their Journey to Mars program.

Compared to chemical propulsion (the type of propulsion that rockets use to escape Earth’s gravity well and reach orbit), SEP has lower thrust but is more fuel-efficient and can provide thrust for longer periods of time. For these reasons, SEP works well in the vacuum of space, particularly on spacecraft with long mission lifetimes.

A Hall thruster tested at NASA Glenn Research Center/ Image courtesy of NASA

SEP engines provide thrust by converting solar energy into electricity and using that electricity to accelerate ionized propellant at extremely high speeds. The iconic blue glow from a SEP thruster is created from photons released by the ions as they lose energy upon leaving the engine.

NASA has been working on SEP technology since the 1950s and they’ve used SEP on prior missions like the Dawn spacecraft, which is currently in orbit around the dwarf planet Ceres and is the first spacecraft to orbit around two extraterrestrial bodies.

Illustration of the Dawn spacecraft with its SEP system / Image courtesy of NASA

Under the new contract, NASA hopes to double the thrust capability compared to current electric propulsion systems and increase the fuel efficiency by 10 times the current chemical propulsion.

One challenge with deep-space missions that use SEP is that as you travel deeper into the solar system (farther away from the sun), it becomes more difficult to effectively capture light from the sun to power the spacecraft. Because of this, NASA stated its current SEP research is funded in parallel with work to advance solar array technology.

During the 36-month contract, Aerojet Rocketdyne is responsible for constructing, testing and delivering an SEP product for testing and evaluation. Eventually, the goal is to have Aerojet Rocketdyne deliver four electric propulsion units that will fly in space.

“Through this contract, NASA will be developing advanced electric propulsion elements for initial spaceflight applications, which will pave the way for an advanced solar electric propulsion demonstration mission by the end of the decade.” Steve Jurczyk, associate administrator of NASA’s Space Technology Mission Directorate

In addition to this particular electric propulsion contract, Aerojet Rocketdyne is responsible for the chemical propulsion — the RS-25 engines — for NASA’s Space Launch System, the rocket designed to be used on missions related to NASA’s Journey to Mars initiative.

Illustration of NASA's Asteroid Redirect Mission using SEP / Image courtesy of NASA

Aerojet Rocketdyne’s current contract is part of NASA’s overall push to advance SEP systems. NASA plans to test the largest and most advanced SEP system ever used in space on their Asteroid Redirect Mission, which is designed to capture an asteroid and place it in orbit around the moon. That mission is currently slated for the mid-2020s.

 

‘Dr Frankenstein’ ready to perform first head transplant by 2017

A controversial surgeon is preparing to carry out the first ever whole head transplant by the end of 2017 after “successful” experiments on monkeys and mice.

Neurosurgeon Sergio Canavero introduced the strategy in 2013 and has been touting his experiments since.

In 2015, the 51-year-old presented at the American Academy of Neurological and Orthopaedic Surgeons’s 39th annual conference, where his speech about the ambitious procedure served as the keynote talk.

Earlier this year, Dr Canavero told New Scientist he had been conducting a series of experiments on animals and human cadavers with the help of scientists in China and South Korea.

“I would say we have plenty of data to go on,” Dr Canavero said.

“It’s important that people stop thinking this is impossible.”

Dr Canavero is working with Xiaoping Ren from Harbin Medical University in China.

According to the publication, Mr Ren has already performed a monkey head transplant and more than 1000 head transplants on mice.


Valery Spiridonov (centre) suffers from Werdnig-Hoffman disease and has volunteered to be the first person to undergo a head transplant under Dr. Canavero’s hands. Photo: Maxim Zmeyev/REUTERS

Dr Canavero’s first patient is Russian program manager, Valery Spiridonov, who is suffering from the rare muscular atrophy disorder Werdnig-Hoffman disease.

The 31-year-old volunteered for the transplant and says that he’s willing to risk death to escape his disease.

His transplant will be done in a vegetative state and is set to take place at Harbin Medical University in China.

 

The two-part procedure is composed of HEAVEN (head anastomosis venture) and Gemini (the subsequent spinal cord fusion).

The whole process involves 36 hours, 150 people (doctors, nurses, technicians, psychologists, and virtual reality engineers), and around $20 million.

According to Dr Canavero, there will be two surgical teams working on the Russian patient at the same time.

One will focus on the Mr Spiridonov, the living patient, while the other will focus on a donor’s body.

The donor will be brain-dead and selected based on height, build, and immunotype.

 

 

 

Is the End of Unlimited Broadband Coming Soon?

Two ISPs have already begun a slow, clever plan to eventually make big money from overage charges.

Until you might actually need it, your Internet service provider (ISP) happily gave you all the data you could consume.

Until the rise of streaming video, the only people eating up tons of data were high-end gamers and maybe people stealing movies. It simply wasn’t possible to be a data hog for the average person watching cat videos, checking sports scores, and/or visiting social media websites.

Because of that — much like wireless providers were more receptive to unlimited plans when the mobile web was a barren wasteland of repurposed sites and little else — broadband providers never bothered to cap their plans. Consumers got “unlimited” service only because the vast majority of us barely moved the needle. It wasn’t generosity.

Before streaming video came along, ISPs offered consumers the equivalent of an all-you-can-eat buffet featuring nothing but egg salad and clams of a questionable age. Now however streaming video has added prime rib, crab legs, and lobster tails to the mix and the all-you-can-eat offers are going away or getting more expensive

It’s already started with Comcast (NASDAQ:CMCSA) and AT&T (NYSE:T) enforcing data caps with customers and it’s going to get worse.

Wifirouter

UNLIMITED BROADBAND DATA MAY ULTIMATELY BECOME A THING OF THE PAST. IMAGE SOURCE: AUTHOR.

How are Comcast and AT&T using data caps?

In both cases, the two ISPs have not set data caps in order to make more money today. Instead, they have cleverly laid the groundwork to collect them down the road. The two broadband providers have set relatively high caps  — 1 TB across the board for Comcast and the same for many AT&T users — and they are not quick to add charges, giving consumers multiple months over the cap before charging them.

At 1TB, or even at half that number, few people are likely to go over the cap today. Going forward however, as streaming video grows, gets joined by virtual reality, and Internet of Things devices all eating data, then what seems like a huge number today may not be so big going forward.

As data needs grow, consumers will use more, and going over may become the norm. When that happens, Comcast and AT&T won’t be adding new charges, they will simply be collecting ones that had been in place for years.

Why will unlimited broadband go away?

It all boils down to two things. The first is that all the major ISPs also operate as cable providers and if a customer cuts the cord they lose revenue. Adding data caps makes it possible to recoup lost pay-television revenue and even dissuade people from leaving cable. If it’s cheaper to stay and pay overage fees due to increased streaming, then why cut the cord at all?

The second reason, however, may be the more important one. Comcast, AT&T, and any other ISPs see how much overages have made the wireless carriers. First it was through people exceeding their allotted calling minutes and now it has moved to money made from people either exceeding their data cap or buying bigger data plans than they actually need in hopes of avoiding overage charges.

T-Mobile (NASDAQ:TMUS) CEO John Legere, a crusader against overage charges, peggedthe total current annual total at $2.5 billion, but noted at a November 2015 Uncarrier X eventthat the number might be closer to $45 billion a year when you factor in over-buying.

Not every ISP will be on board

In the same way that T-Mobile has made not charging overage charges part of its business model (it instead slows data speeds when consumers reach their limit), there will be ISPs that continue to offer unlimited broadband. Charter Communications, the second biggest provider behind Comcast, can’t implement a cap for seven years under the deal it made to win Federal Communications Commission (FCC) approval of its deal to buy Time Warner Cable.

But while it might not happen quickly and it won’t be universal, data caps and overage charges are coming because ISPs see how much money the wireless carriers make from a confused public. People accept the idea that if they consume more data they should pay for it and people have shown with their phones that they are either unwilling or unable to keep track.

Comcast and AT&T are building up the expectation that using more data means paying more money. That will lead to people paying for unlimited plans when they don’t need them or running up overage charges when they do. The profit potential for ISPs is simply too high to let unlimited broadband live and it’s slow death has already begun.

Daniel B. Kline (TMFDankline

https://www.citizengoods.com/sales/tv-show-movie-posters-throne-poster?aid=a-t05y2r3p

Here’s The Real Difference Between Sativa & Indica Pot Strains

This article was originally published on May 27, 2015.

Now that pot legislation is making its way across the country, it’s time for a refresher on the difference between the main types of marijuana strains: indica and sativa. It’s a lesson some of us have had to learn over and over again. But, this infographic from the recently-released Green: A Field Guide To Marijuana will help us get it right.

At a basic level, we may be aware that sativa strains produce a sort of “up” high that gives users a feeling of euphoria, increased creativity, and energy. Meanwhile, indica strains usually leave us relaxed and “in-da-couch.”

But, as the infographic shows, the differences start with the shape of the plants: Sativas tend to have longer, thinner leaves and are lighter in color. Indica strains, meanwhile, often have shorter, fatter leaves and dark, dense buds.

And then, of course, there’s a whole host of hybrid strains that may produce a high that’s between the two ends of that spectrum. But, when they’re up-close — like in Erik Christiansen’s photos in the book — the differences are easy to spot. Check out the full infographic, below.

IMAGE: COURTESY OF GREEN: A FIELD GUIDE TO MARIJUANA BY DAN MICHAELS, PHOTOS BY ERIK CHRISTIANSEN, PUBLISHED BY CHRONICLE BOOKS.
Refinery29 in no way encourages illegal activity and would like to remind its readers that marijuana usage continues to be an offense under federal law, regardless of state marijuana laws. To learn more, click here.
PHOTO: COURTESY OF ERIK CHRISTIANSEN.

Cassini spacecraft probes methane-filled sea on Titan

Emilee Speck

Oceanographers may need to study alien worlds sooner than you think.

Observations by NASA‘s Cassini spacecraft indicate Saturn’s moon Titan is more Earth-like with its dense atmosphere, lake-filled surface and possible wetlands.

Other than our home planet Titan is the only known world in the solar system with stable liquid on its surface, according to NASA.

Since 2004, Cassini has found more than 620,000 square miles of Titan’s surface covered in liquid, about two percent of its globe. Planetary scientists have theorized about what elements fill Titan’s liquid bodies, but thanks to Cassini they now have answers

A new study using Cassini’s radar instrument to study Titan’s second largest sea, known as Ligeia Mare, between 2007 and 2015 reveals it’s a filled with methane.

The study published in the Journal of Geophysical Research: Planets confirms what planetary scientists have thought about Titan’s seas for some time.

Using Cassini’s radar instrument to detect echoes from the seafloor of Ligeia Mare scientists used the depth-sounding information to observe temperatures, which helped give clues to their composition, according to the news release.

“Before Cassini, we expected to find that Ligeia Mare would be mostly made up of ethane, which is produced in abundance in the atmosphere when sunlight breaks methane molecules apart. Instead, this sea is predominantly made of pure methane,” said Alice Le Gall, a Cassini radar team member and lead author of the new study.

Ligeia Mare is the about the size of Lake Huron and Lake Michigan together, according to NASA and from Cassini’s flybys scientists were able to determine the sea is 525 feet deep in some areas.

All of Titan’s seas are named for mythical sea creatures. The largest sea, Kraken Mare is about 680 miles long.

Another similarity between our home planet and Titan is they both have nitrogen atmospheres, but Titan is lacking much oxygen. Titan’s atmosphere is mostly methane with trace amounts of ethane and because of the distance from the sun, meaning cold temperatures, the methane and ethane remain in liquid form instead of escaping, according to NASA.

Le Gall offered a few possibilities of how Ligeria Mare became mostly methane filled, instead of ethane as Cassini’s team originally thought.

“Either Ligeia Mare is replenished by fresh methane rainfall, or something is removing ethane from it,” said Le Gall. “It is possible that the ethane ends up in the undersea crust, or that it somehow flows into the adjacent sea, Kraken Mare, but that will require further investigation.”

The study also found Ligeia Mare’s shoreline may warm quicker than in the sea, similar to a beach on Earth.

“It’s a marvelous feat of exploration that we’re doing extraterrestrial oceanography on an alien moon,” said Steve Wall, deputy lead of the Cassini radar team. “Titan just won’t stop surprising us.”

 

 

Copyright © 2016, Orlando Sentinel

 

Astronauts Successfully Attach Inflatable Room to Space Station

ALYSSA NEWCOMB

Inflatable room attached to space station

A giant addition that one day may be used to support life on Mars has been deployed and is set to undergo a two-year test.It will be expanded to 5 times its size »

 

 

50% off All-Terrain for Galaxy Tab 3!