Stephen Hawking says we have 100 years to colonize a new planet—or die. Could we do it?

Here’s what it would take to survive this particular doomsday prophecy

Hawking urges Moon landing to ‘elevate humanity’

By Pallab Ghosh

Image result for journey to the moon
Prof Hawking says: “If humanity is to continue for another million years, our future lies in boldly going where no one else has gone before.”
Prof Stephen Hawking has called for leading nations to send astronauts to the Moon by 2020.
They should also aim to build a lunar base in 30 years’ time and send people to Mars by 2025.
Prof Hawking said that the goal would re-ignite the space programme, forge new alliances and give humanity a sense of purpose.
He was speaking at the Starmus Festival celebrating science and the arts, which is being held in Trondheim, Norway.
Spreading out into space will completely change the future of humanity
Prof Stephen Hawking
“Spreading out into space will completely change the future of humanity,” he said.
“I hope it would unite competitive nations in a single goal, to face the common challenge for us all.
“A new and ambitious space programme would excite (young people), and stimulate interest in other areas, such as astrophysics and cosmology”.
Moon LandingsImage copyrightNEIL A. ARMSTRONG
Image caption
Return of the Moon landings would give humanity “a sense of purpose”.
He addressed the concerns of those arguing that it would be better to spend our money on solving the problems of this planet along with a pointed criticism of US President Donald Trump.
“I am not denying the importance of fighting climate change and global warming, unlike Donald Trump, who may just have taken the most serious, and wrong, decision on climate change this world has seen,” he said.
Prof Hawking explained that human space travel is essential for the future of humanity precisely because the Earth was under threat from climate change as well as diminishing natural resources.
“We are running out of space and the only places to go to are other worlds. It is time to explore other solar systems. Spreading out may be the only thing that saves us from ourselves. I am convinced that humans need to leave Earth,” the Cambridge University theoretical physicist explained.
Image result for journey to the moon

The head of the European Space Agency (Esa) Jan Woerner has said he envisages the construction of a Moon base to replace the International Space Station in 2024 and is collaborating with Russia to send a probe to assess a potential site. China has set itself the goal of sending an astronaut to the Moon.
Nasa has no plans to return to the Moon, instead focusing its efforts on sending astronauts to Mars by the 2030s. Though if other space agencies begin to collaborate on constructing a lunar base it would be hard to see Nasa not participating.
Prof Hawking said that there was no long-term future for our species staying on Earth: it would either be hit by an asteroid again or eventually engulfed by our own Sun. He added that travelling to distant worlds would “elevate humanity”.

Media captionIn this European Space Agency video Dr James Carpenter describes the landing site
“Whenever we make a great new leap, such as the Moon landings, we bring people and nations together, usher in new discoveries, and new technologies,” he continued.
“To leave Earth demands a concerted global approach, everyone should join in. We need to rekindle the excitement of the early days of space travel in the sixties.”
He said that the colonisation of other planets was no longer science fiction, though he did pay tribute to the genre in his closing remarks.
“If humanity is to continue for another million years, our future lies in boldly going where no one else has gone before.
“I hope for the best. I have to. We have no other option”.

Hello, Death Star: Russia Had a Secret Cold War Space Station Equipped with Cannons

The clandestine celestial war between superpowers isn’t over. It’s just getting more high-tech.

Hello, Death Star: Russia Had a Secret Cold War Space Station Equipped with Cannons

Back in 1968, three Apollo 8 astronauts circled the moon on Christmas Eve and returned home, where they were greeted with a ticker-tape parade and honored on the cover of Time. Far out of sight from these public celebrations, however, another group of astronauts was training to reach space. Unlike the Apollo program, these spacemen were part of a clandestine military operation that had less to do with peaceful exploration of the heavens and much more to do with wreaking havoc in them.

One of those secret astronauts was retired Vice Adm. Richard Truly, who later headed NASA. “You just couldn’t tell anybody about it,” he recalled to me in 2007. “Nobody.” The details of the program—called the Manned Orbiting Laboratory (MOL) and run by the Air Force and the intelligence community’s National Reconnaissance Office (NRO)—were revealed last year when the NRO partly declassified more than 800 files and photos.

The project, which was in place from 1963 to 1969, aimed to spy on and thwart the Soviet Union in space. According to the declassified documents, one objective was to explore the feasibility of attacking Moscow’s satellites by knocking them out of orbit or firing projectiles at them. The program also included an elaborate plan to capture a Russian spacecraft in orbit, swaddle it in heat-shield material, and send it back to Earth for inspection. Yet despite Washington’s best efforts to keep these experiments under wraps at the time, its main adversary discovered the operation.

In fact, Moscow equipped its secret manned space station, Almaz, with a rapid-fire cannon, according to chief designer Vladimir Polyachenko. If a U.S. spacecraft attempted “to inspect or even attack the Almaz, we could destroy it,” Polyachenko told PBS in 2007. He also said that in 1975, cosmonauts test-fired the cannon, making the Soviet Union the first nation to weaponize an orbiting spacecraft.

For budgetary reasons, Washington’s MOL never got off the ground. Many of the astronauts transferred to NASA’s Space Shuttle program, but specifically to the clandestine side operated by the Air Force and NRO. Between 1982 and 1992, it conducted 11 shuttle missions that remain top secret. Given what operations were underway by the Air Force, it’s clear that foreign-satellite destruction was a high priority. In 1985, for instance, an Air Force pilot flying an F-15 fighter jet fired a missile at a failing U.S. satellite in low-Earth orbit. Until that day, no other country had annihilated a spacecraft with a weapon.

It would take 22 years before another power emulated that move: In 2007, Beijing launched a missile that demolished a Chinese weather satellite. Not to be outdone, Washington blasted another of its malfunctioning satellites the following year.

Back then, some might have argued that the space race had resumed. However, the NRO documents make it clear that the race never lapsed.

Back then, some might have argued that the space race had resumed. However, the NRO documents make it clear that the race never lapsed. They reveal that from its onset, the Space Age consisted of two very distinct parts: one in the spotlight, run by NASA, to explore the universe; and another in the darkness, run by the Pentagon, to militarize the universe. Today, NASA exists without a shuttle, pays Russia for rides, and wrestles with budget problems. Yet Washington continues to expand its secret space program—sending planes into orbit and developing satellites that have potentially offensive capabilities.In 2001, a commission recommended that Washington “vigorously pursue the capabilities…to ensure that the President will have the option to deploy weapons in space.” A year later, President George W. Bush withdrew from the Anti-Ballistic Missile Treaty with Russia. In 2004, the secretary of the Air Force issued a document that codified its space-warfare policies and called for “space superiority,” which was defined as “freedom to attack as well as freedom from attack.”

While President Barack Obama vowed at the start of his first term not to militarize space, he did the opposite when he approved the launch of a number of military spacecraft that could double as both intelligence collectors and weapons systems. As recently as June, Gen. John E. Hyten, commander of the Air Force Space Command, issued a white paper that reiterated the push for “a force capable of achieving space superiority.” Coincidentally, circling above Earth at the time was an orbital test vehicle, the X-37B (of which the Air Force has two). First launched in 2010, the unmanned plane is capable of remaining in space for up to two years at a time. Although the Air Force refuses to disclose the X-37B’s activities, its design is very similar in size, shape, and capabilities to the X-20 Dyna-Soar from the 1960s, which was crafted to be manned by a single pilot and to launch a nuclear weapon from space. Washington’s discreetness now has some—China, in particular—wondering whether the X-20 has come full circle in the X-37B.

In June, Beijing debuted its own mysterious spacecraft into the galaxy. It is equipped with a long mechanical arm, ostensibly to scoop up space junk. But given the enormous amount of space debris and the maneuverability of the vehicle, some fear that its real purpose is to disable or destroy U.S. satellites in the event of a conflict.

To be sure, the more satellites spinning in space, the greater the chances that they collide, an accident that could be wrongly interpreted by an adversary. Of the roughly 1,300 active satellites, 568 are American—about 120 of which are military or intelligence spacecraft—more than double the number belonging to China and Russia combined.

One alternative to orbital calamity, of course, is orbital diplomacy. While the 1967 Outer Space Treaty bars the placement of weapons of mass destruction in orbit or outer space, it is silent on conventional weapons. The 1979 Moon Agreement bans the militarization of the moon and other celestial bodies, but it has not been ratified by the United States, Russia, China, or any other nation.

In 2008, China and Russia proposed an agreement to ban such arms. The U.N. General Assembly finally adopted a version of their proposal last December. The United States, arguing that the agreement is flawed and unverifiable, opposed it.

Without Washington’s buy-in, there is little incentive for others to adhere to the treaty. Other countries with military satellites in orbit, such as India or Israel, may also begin exploring defensive and offensive capabilities to protect their space assets.

Although Donald Trump said little about space during his campaign, he indicated plans to initiate a military buildup, which could very well include the cosmos. But he has a key question to answer: Is humanity better off with a celestial Wild West or with an orbital order, however imperfect?

A version of this article originally appeared in the November/December 2016 issue of FP magazine.

Illustration by Matthew Hollister


‘Death Star Spaceship’ Over Japan?

Seerat Chabba,International Business Times

 A peculiar spherical cloud was spotted in the Japanese city of Fujisawa, just south of Tokyo, earlier this month, giving rise to comparisons with a Star Wars weaponized space station. Experts, however, have shot down any such possibility of extra terrestrial interaction.

Pictures of the phenomenon were posted on Twitter last week and went viral with thousands of retweets and comments. Social media user Poppy was one of the first to capture the large cloud.

“When I looked out of the car window I saw a round ball-shaped cloud. I gazed at the cloud for a while then I rushed to take the photo,” Poppy, whose Twitter handle is  @pmxpvrtmx, told local Japanese news outlet, Rocket News 24. “When I saw the cloud it was an even more spherical shape, so I regret not taking the photo more quickly.”


Many likened the formation to a Death Star-style UFO or a “dragon’s nest” and this is not the first time such a cloud has been spotted. A similar mysterious cloud was recently spotted in Tremeirchion, north Wales, according to the BBC, and last year a Twitter user posted another picture of such a spherical structure in Japan.

View image on Twitter

Experts, however, are steering clear of any such theories.

While some say that the sighting could have been be a small portion of a larger cloud that was separated by strong winds, referred to as cumulus fractus clouds, others say that the angle from which it was photographed could have been the reason behind the distinctly spherical shape as another picture of the same cloud showed a change in shape.

“While I can’t verify the origin of this image, or whether it was even of the same cloud, it appears that the cloud only appeared spherical from one direction,” atmospheric scientist Todd Lane from the University in Melbourne, Australia told ScienceAlert.

“That is, the photographer was lucky to be in the right place to capture an interesting image of what is likely an uninteresting cloud. It looks to me to be some form of cumulus fractus cloud.”


Are Aliens Really Just 94 Light Years Away? A ‘Strong Signal’ Might Just Mean Yes

Dan Seitz,UPROXX 

‘Strong signal’ stirs interest in hunt for alien life

A "strong signal" detected by a radio telescope in Russia that is scanning the heavens for signs of extraterrestrial life has stirred interest among the scientific community

View photos


A “strong signal” detected by a radio telescope in Russia that is scanning the heavens for signs of extraterrestrial life has stirred interest among the scientific community (AFP Photo/Ye Aung Thu)

Washington (AFP) – A “strong signal” detected by a radio telescope in Russia that is scanning the heavens for signs of extraterrestrial life has stirred interest among the scientific community.

“No one is claiming that this is the work of an extraterrestrial civilization, but it is certainly worth further study,” said Paul Gilster, author of the Centauri Dreams website which covers peer-reviewed research on deep space exploration.

The signal is from the direction of a HD164595, a star about 95 light-years from Earth.

The star is known to have at least one planet, and may have more.

The observation is being made public now, but was actually detected last year by the RATAN-600 radio telescope in Zelenchukskaya, Russia, he said.

Experts say it is far too early to know what the signal means or where, precisely,it came from.

“But the signal is provocative enough that the RATAN-600 researchers are calling for permanent monitoring of this target,” wrote Gilster.

The discovery is expected to feature in discussions at the 67th International Astronautical Congress in Guadalajara, Mexico, on September 27.

“Working out the strength of the signal, the researchers say that if it came from an isotropic beacon, it would be of a power possible only for a Kardashev Type II civilization,” Gilster wrote, referring to a scale-system that indicates a civilization far more advanced than our own.

“If it were a narrow beam signal focused on our Solar System, it would be of a power available to a Kardashev Type I civilization,” indicating one closer to Earth’s capabilities.

Gilster, who broke the story on August 27, said he had seen a presentation on the matter from Italian astronomer Claudio Maccone.

“Permanent monitoring of this target is needed,” said the presentation.

Nick Suntzeff, a Texas A&M University astronomer told the online magazine Ars Technica that the 11 gigahertz signal was observed in part of the radio spectrum used by the military.

“If this were a real astronomical source, it would be rather strange,” Suntzeff was quoted as saying.

“God knows who or what broadcasts at 11Ghz, and it would not be out of the question that some sort of bursting communication is done between ground stations and satellites,” Suntzeff said.

“I would follow it if I were the astronomers, but I would also not hype the fact that it may be at SETI signal given the significant chance it could be something military.”

The search for intelligent life far away continuesIStock

“God knows who or what broadcasts at 11Ghz.

How to Make a Spaceship: A Band of Renegades, an Epic Race, and the Birth of Private Spaceflight #gsummit

The historic race that reawakened the promise of manned spaceflight

Alone in a Spartan black cockpit, test pilot Mike Melvill rocketed toward space. He had eighty seconds to exceed the speed of sound and begin the climb to a target no civilian pilot had ever reached. He might not make it back alive. If he did, he would make history as the world’s first commercial astronaut.

The spectacle defied reason, the result of a competition dreamed up by entrepreneur Peter Diamandis, whose vision for a new race to space required small teams to do what only the world’s largest governments had done before.

Peter Diamandis was the son of hardworking immigrants who wanted their science prodigy to make the family proud and become a doctor. But from the age of eight, when he watched Apollo 11 land on the Moon, his singular goal was to get to space. When he realized NASA was winding down manned space flight, Diamandis set out on one of the great entrepreneurial adventure stories of our time. If the government wouldn’t send him to space, he would create a private space flight industry himself.

In the 1990s, this idea was the stuff of science fiction. Undaunted, Diamandis found inspiration in an unlikely place: the golden age of aviation. He discovered that Charles Lindbergh made his transatlantic flight to win a $25,000 prize. The flight made Lindbergh the most famous man on earth and galvanized the airline industry. Why, Diamandis thought, couldn’t the same be done for space flight?

The story of the bullet-shaped SpaceShipOne, and the other teams in the hunt, is an extraordinary tale of making the impossible possible. It is driven by outsized characters—Burt Rutan, Richard Branson, John Carmack, Paul Allen—and obsessive pursuits. In the end, as Diamandis dreamed, the result wasn’t just a victory for one team; it was the foundation for a new industry and a new age.
Business and Vacation Property Rentals

Are We The Earliest Intelligent Life In The Universe?

Proxima Centauri lies in the constellation of Centaurus (The Centaur), just over four light-years from Earth. Although it looks bright through the eye of Hubble, Proxima Centauri is not visible to the naked eye.

ESA/Hubble & NASA

The study of the formation and logic of the universe — cosmology — and the study of exoplanets and their conduciveness to life do not seem to intersect much.

Scientists in one field focus on the deep physics of the cosmos, while the others search for the billions upon billions of planets out there — and seek to unlock their secrets.

But astrophysicist and cosmologist Avi Loeb, a prolific writer about the early universe from his position at the Harvard-Smithsonian Center for Astrophysics, sees the two fields of study as inherently connected and has set out to be a bridge between them. A result of his efforts is a theoretical paper that seeks to place the rise of life on Earth, and perhaps elsewhere, in cosmological terms.

His conclusion: Earth may well be a very early example of a living biosphere, having blossomed well before life might be expected on most planets. And in theoretical and cosmological terms, there are good reasons to predict that life will be increasingly common in the universe as the eons pass.

By eons, here, Loeb is thinking in terms that don’t generally get discussed in geological or even astronomical terms. The universe may be an ancient 13.7 or so billion years old, but Loeb sees a potentially brighter future for life not billions — but trillions — of years from now. Peak life in the universe, he says, may arrive several trillion years hence.

“We used the most conservative approaches to understanding the appearance of life in the universe, and our conclusion is that we are very early in the process and that it is likely to ramp up substantially in the future,” says Loeb, whose paper was published in the Journal of Cosmology and Astroparticle Physics. “Given the factors we took into account, you could say that life on Earth is on the premature side.”

This most intriguing conclusion flows from the age of the universe, the generally understood epochs when stars and then planets and galaxies formed, and then how long it would take for a planet to cool off enough to form the chemical building blocks of life and then life itself. Given these factors, Loeb says, we’re early.

In the long term, the authors determined, the dominant factor in terms of which planets might become habitable proved to be the lifetime of stars. The higher a star’s mass, the shorter its lifetime. Stars larger than about three times the sun’s mass will burn out well before any possible life has time to evolve.

Our sun is a relatively large and bright star, which is why its lifetime will be relatively short in cosmological terms (altogether, maybe 11 billion years, with 4.5 billion already gone). But smaller stars, the “red dwarf,” low-mass variety, are both far more common in the universe and also much longer lived — as in trillions of years.

These smallest stars generally have less than 10 percent the mass of our sun, but they burn their fuel (hydrogen and helium) much more slowly than a larger star. Indeed, some may glow for 10 trillion years, Loeb says, giving ample time for life to emerge on any potentially habitable planets that orbit them. What’s more, there’s every reason to believe that the population of stars in the galaxy and cosmos will increase significantly, giving life ever more opportunity to commence.

As a result, the relative probability of life grows over time. In fact, chances of life are 1,000 times higher in the distant future than now.

This calculation, however, comes with a major caveat: Scientists are sharply divided about whether a star much smaller than ours can actually support life.

The potential obstacles are many — an insufficient amount of heat and energy emanating from the star unless the planet is close in, the fact that red dwarf stars have powerful, luminous beginnings that could send a nearby planet into a runaway greenhouse condition that might result in permanent sterilization, and that many planets around red dwarfs would be close to the stars and consequently tidally locked. That means that one side of the planet would always face the star and be light, while the other would continue in eternal darkness. This was earlier considered to be a pretty sure deterrent to life.

Recent theoretical analyses of planets around these red dwarfs, however, suggests that life could indeed emerge. It could potentially survive at the margins — where day turns into night and the temperatures would likely be stable — and also in other day-side regions were temperatures could be moderated by clouds and winds. But no observations have been made to substantiate the theory.

Because of their relatively cool temperatures and resulting low brightness, individual red dwarfs are nearly impossible to see with the naked eye from Earth. But they’re out there.

The nearest star to our sun, Proxima Centauri, is a red dwarf, as are 20 of the next 30 nearest stars. Scientists announced Wednesday they had discovered that a potentially habitable planet about the size of Earth orbits Proxima Centauri. Data from the Kepler Space Telescope suggest that as many as 25 percent of red dwarfs have planets orbiting in their habitable zones — neither too hot nor too cold to keep liquid water from sometimes pooling on their surfaces.

“I think we can and we should test these theories in the years ahead with observations,” Loeb says. “We should be able to tell if nearby low-mass stars have life around them” in the decades ahead.

And if red dwarfs can support life, then the future for life in the universe is indeed grand.

The merging of cosmological theory and astronomical observation that Loeb has in mind would indeed be unusual, but it is nonetheless consistent with the interdisciplinary nature of much of the broader search for life beyond Earth. That effort has already brought together astrophysicists and geoscientists, astronomers and biologists. It’s just way too big for one discipline.

An interesting sidelight to Loeb’s argument that Earth may well be among the earliest planets where life appeared and continued is that it would provide a solution to the extraterrestrial life puzzle known as Fermi’s Paradox.

It was in 1950 that renowned physicist Enrico Fermi was talking with colleagues over lunch about the predicted existence of billions of still-to-be-discovered planets beyond our solar system, and the likelihood that many had planets around them. Fermi also was convinced that the logic of the vast numbers and of evolution made it certain that intelligent, technologically advanced life existed on some of those planets.

It was an era of fascination with aliens, flying saucers and the like, but there actually were no confirmed reports of visitations by extraterrestrial life. Ever, it seemed.

If intelligent life is common in the universe, Fermi famously wondered, “Then where is everybody?”

There are many potential answers to the question, including, of course, that we are alone in the universe. The possibility that Earth might be among the very early planets with life has not been put forward before, but Loeb says that now it has been.

“Our view is that we’re at the very beginning of life in the universe, we’re just ramping up,” he says. “So of course we haven’t been visited by anything extraterrestrial.”

As a congenital thinker in the very long term, Loeb also raises the issue of whether it makes sense for human life to remain on Earth and in our solar system. The sun, after all, will run out of fuel in those remaining 6 billion years, will expand enormously as that occurs, and then will re-emerge as a superdense white dwarf star. Any biology in our solar system would have been destroyed long before that.

But is Proxima Centauri one of those very long-lived stars?

“It will be there a very long time,” he says. “If the conditions are right, then maybe a time will come to migrate to any planets that might be around Proxima. It’s four light-years away, so it would take generations of humans to get there. Certainly very difficult, but some day in the far future people may be faced with an alternative that’s considerably worse.”

Scientists hope Japanese probe can answer questions about planet Venus

By Kenneth Chang

Venus is not a placid paradise — that much we know. In addition to searing surface temperatures, wind in the upper atmosphere howls as fast as 250 mph, carrying clouds around the planet once every four days.

Yet Venus itself spins very slowly: one rotation every 243 Earth days — in the wrong direction, no less, opposite to almost every other body in the solar system.

On the whole, the atmosphere on Earth rotates about the same speed as the planet. So why does the air on slow-spinning Venus speed around so much faster than the planet itself?

The Japanese space probe Akatsuki, now in orbit around Venus, seeks to solve the mystery of so-called super-rotation.

That is not just an idle trivia question for planetary scientists. Computer models of our own weather fail when applied to Venus, and knowledge of the planet’s workings could better our understanding of Earth’s.

‘‘We don’t know what is the missing point in meteorology,’’ said Masato Nakamura, Akatsuki’s project manager.

In recent years, Venus has been a backwater of planetary exploration, even though it is much closer in size to Earth than is Mars. For a long time, scientists imagined there could be a habitable tropical paradise beneath Venus’ thick clouds.

In the late 1950s, intense thermal emissions, measured by a radio telescope on Earth, told a different story. Venus broils.

The average surface temperature is more than 850 degrees — an extreme demonstration of the heat-trapping prowess of carbon dioxide, the primary constituent of the Venusian atmosphere. Clouds of sulfuric acid make it an even less appealing place to visit.

In the 1990s, NASA’s Magellan spacecraft precisely mapped the topography of Venus through radar. Except for a few flybys by spacecraft on the way to somewhere else, NASA has not returned to Venus, although the agency is considering two modest proposals.

A European mission, Venus Express, studied the planet from 2006 to 2014, discovering among other things a frigid layer of atmosphere, minus 280 degrees Fahrenheit at an altitude of 75 miles, sandwiched between two warmer layers.

But now Akatsuki, which entered orbit last December, has begun its work. Takehiko Satoh, one of the mission scientists, said that one of ‘‘the most exciting, most surprising results’’ so far came almost immediately after the spacecraft arrived.

The camera that captures long-wavelength infrared light from the cloud tops discovered an arc-shaped white streak that stretched 6,000 miles from nearly the south pole to nearly the north pole.

Curiously, this giant atmospheric feature does not move with the atmosphere. ‘‘It seems to be fixed to the ground,” Satoh said.

The arc sits above Aphrodite Terra, a highland region about the size of Africa that rises up nearly 3 miles from the surface. Scientists working on data from the Venus Express reported a similar finding in July.The small spacecraft — the main body is a box a bit bigger than a refrigerator — carries five cameras, collecting light at different wavelengths to monitor the Venusian atmosphere at different altitudes.

In another experiment, scientists will observe how the radio signal from the spacecraft to Earth is distorted when it passes through the atmosphere. That will reveal temperature, abundance of sulfuric acid vapor and other properties. By observing the atmosphere at different altitudes, they can detect wavelike features that rise and fall, like blobs in a lava lamp.That Akatsuki, which means ‘‘dawn’’ in Japanese, is there at all is the result of ingenuity and perseverance.

It launched in May 2010 and arrived at Venus seven months later. But when its main engine failed to fire properly, it sailed right past the planet. ‘‘It was a very sad moment,’’ Satoh said.

Within a day, Satoh said, calculations indicated that in six years, Akatsuki, in orbit around the sun instead of Venus, could meet up with Venus again. But it was not clear the spacecraft still would be able to slow down and enter orbit.

An investigation found that a valve in the engine had leaked, leading to the formation of salts that fused it shut. The engine, as it fired, had overheated beyond repair.

Akatsuki still had the maneuvering thrusters that were to be used after it entered orbit. They were not as powerful as the broken engine, but they could apply enough force to slow it down enough so that Venus’ gravity could capture it.The Akatsuki’s orbit is different from the one originally envisioned. Instead of being synchronized to the spinning atmosphere, which would have allowed scientists to better track small changes, the spacecraft now loops around Venus in a large elliptical orbit.

That provides different benefits. Instead of intently staring at one spot, seeing the smallest changes, scientists are now able to see what happens on a global scale, although they will miss some of the details.

Akatsuki is to continue operating until at least April 2018, depending on how much fuel it has left. ‘‘We know at least we have one kilogram of fuel,’’ said Nakamura, likening the uncertainty to an imprecise fuel gauge in a car.

If it turns out that Akatsuki has more, the spacecraft could continue operating for perhaps up to six years, he said.

China to attempt a space first: Landing on the far side of the Moon

The Chang’e-3 probe carried the Yutu rover to the lunar surface in 2013.

China plans to become the first nation to land a probe on the far side of the Moon, according toXinhua News Agency, the country’s official press organization.

Launching possibly as early as 2018, the mission represents the next step in China’s plans to explore the Moon with robotic probes and, within the next decade, to return a couple of kilograms of lunar material to Earth. The proposed Chang’e-4 probe follows the successful soft landing of the Chang’e-3 probe on the near side of the Moon in December 2013.

Although the new probe was built as the engineering backup to the Chang’e-3 lander, Chinese officials said the structure could handle a larger payload. China plans to use the probe to study “geological conditions” on the far side of the moon. The Chang’e probes are named after the Chinese goddess of the Moon.China has also offered foreign countries the opportunity to participate in its lunar exploration programs. In contrast to NASA, Europe and Russia have both signaled their interest in further studying the Moon and likely landing humans there, before moving on to Mars. Many countries and businesses see potential value in ice at the lunar poles and rare minerals in the lunar soil. The US Congress recently passed a law to legalize the mining of these resources.

Humans have studied the far side of the Moon from above since 1959, when the Soviet Union’s Luna 3 spacecraft returned the first grainy images of its pockmarked surface. But no humans or robotic spacecraft have yet landed there.