3D Printers to Revolutionise Space Travel Within Two Year

3D printing
Astronaut Robert L. Satcher Jr. works outside the International Space Station in 2009. NASA hopes that 3D printing will allow astronauts to set up permanent habitats in the future. NASA/HANDOUT/REUTERS

NASA are aiming to introduce 3D printers into spacecraft within two years, allowing astronauts to set up permanent habitats on other planets and even print their own food.

In an interview with Newsweek, NASA’s 3D printing chief Niki Werkheiser says the technology will revolutionize space travel by allowing astronauts to be away from year for years on exploration missions without relying on ground control.

Current costs for space transportation are $10,000 per pound of mass. The development therefore has the potential to save millions of dollars as astronauts can travel light and print essentials on demand whilst in space.

NASA is currently developing its largest rocket yet, the Space Launch System (SLS). The SLS is due to make its first test flight in 2017 and Werkheiser says her team are working to get a 3D printer on-board.

So far, Werkheiser’s team at NASA’s Marshall Space Flight Center in Alabama have produced several rocket components and a small wrench with the technology and yesterday the team announced the first successful print of a copper engine part for rockets.

However, they are working on much more exciting projects, including printing parts for a small shelter using substitutes for Martian and lunar sand – the theory being that astronauts could one day use the printers to build themselves habitats on extraterrestrial surfaces.

“The bottom line is being able to print anything you need in orbit. When we live on the ground, we don’t think much about running to Home Depot if something breaks but when you’re in space, even tiny things make a difference,” says Werkheiser.

The space agency is also funding a Texas-based company which is researching printing food, and has already produced prototype results in the form of printed pizza.

Other projects include developing a recycler which breaks down food wrappers into filament which the printer could convert into useful tools like circuit boards and batteries.

Werkheiser is optimistic that commercial applications of the technology means 3D printing in space will not be a thing of the future for long.

3D products are already being touted as offering a solution to homelessness and a means of creating human organs for those in need of transplants.

“The beautiful thing about 3D printing is that you’re going to see a pretty rapid evolution of commercial development. It’s going to happen,” says Werkheiser.

NASA has spent some $3m on the In-Space Manufacturing project which Werkheiser heads up.

The prototype 3D printer used on the International Space Station is the size of a small microwave and prints objects the size of an iPhone 6.

It produces objects by a process known as additive construction, using plastic filament as ink and constructing objects by a layering technique. Instructions are uplinked to the printer from ground control via email.

Werkheiser’s team are working on introducing metal filament to allow the printer to produce sturdier tools.

However, they are still working to overcome certain challenges posed by manufacturing in microgravity – for example, whether the layers of heated plastic form strong bonds when layered on top of each other in the absence of gravity.

Nevertheless, Werkheiser believes the technology will provide the key to allowing astronauts to live in space with the same freedom as on earth.

“This suite of capabilities will enable us to operate and live in space as we do on the ground. You need to get that autonomy in space and this is the secret sauce to getting there.”

 

 

Nasa’s Europa Mission take another step toward reality

 

NASA’s current plan for exploring Europa has just passed its first major review, proving that it’s feasible, unlike any of the previous ideas the agency’s scientists cooked up. America’s space agency has been developing mission ideas for Jupiter’s moon for years and even considered sending a lander to the satellite as recently as a year ago. Its scientists also once thought of sending a spacecraft to orbit Europa, but they ended up having to scrap that plan: the moon is bathed in Jupiter’s radiation, which would quickly kill any vessel that’s constantly exposed to it. So, instead of a lander or a Europa orbiter, NASA will send out a spacecraft in the 2020s designed to orbit Jupiter itself.

As the agency revealed in May, that spacecraft will be equipped with nine imaging, radar, magnenometry and spectometry tools to study the moon’s ice crust and the subsurface ocean that’s likely underneath it. The vehicle will fly by Europa 45 times during its mission period, and it will use every chance it gets to know more about the natural satellite. It’ll even be equipped to gather liquid/gas samples, in case the moon really does erupt plumes of water into space. NASA’s Jet Propulsion Laboratory has been studying the mission formally known as the Clipper concept since 2011, with help from the Johns Hopkins University Applied Physics Laboratory (APL). Now, that concept is ready to enter development phase, and if all goes well, we’ll finally know if there’s life on Jupiter’s moon.

 

 

 

 

Spacecraft built from graphene could fly without any fuel

 

Graphene is a wonder material made of carbon atoms arranged in a honeycomb lattice. (Photo: Wiki Commons)

Even though it is only one atom thick, graphene is 200 times stronger than steel. It conducts heat and electricity with great efficiency, is nearly transparent, and might just be the most useful material ever discovered. The amazing properties of graphene, as well as the many inventions that have spawned from its discovery, are becoming too numerous to count. Now scientists have stumbled upon yet another incredible hallmark of this wonder material: It turns light into motion, reports New Scientist.
This latest graphene breakthrough came entirely by accident. Researchers discovered it while using a laser to cut a sponge made of crumpled sheets of graphene oxide. As the laser cut into the material, it mysteriously propelled forward. Although lasers have been shown to shove single molecules around, they shouldn’t be physically capable of moving a structure as large as the graphene sponge.
Baffled, researchers investigated further. The graphene material was put in a vacuum and again shot with a laser. Incredibly, the laser still pushed the sponge forward, and by as much as 40 centimeters. Researchers even got the graphene to move by focusing ordinary sunlight on it with a lens.
How is this possible? Researchers still aren’t sure, but there are two leading theories. One explanation is that the material is acting like a solar sail. Basically, photons can transfer momentum to an object and propel it forward, and in the vacuum of space this effect can accumulate and even generate enough thrust to move a spacecraft.
When researchers tested the solar sail theory, however, it worked too well. This led them to consider a second possibility, that the graphene is absorbing the laser’s energy, building up a charge of electrons. Eventually extra electrons are released, which act like a propellant, pushing the graphene material in the opposite direction.
Though this second theory is a bit vague and incomplete, scientists were able to detect a current flowing away from the graphene as it was exposed to a laser, suggesting that the theory is at least on the right track.
So what does this all mean? It means that researchers may have just accidentally discovered a propulsion system for a spacecraft that requires no fuel whatsoever. Essentially, a spacecraft built from graphene could explore the heavens powered by nothing more than sunlight.
“While the propulsion force is still smaller than conventional chemical rockets, it is already several orders larger than that from light pressure,” wrote researcher Yongsheng Chen and colleagues of the discovery.
More study is required before researchers can say for sure if the material can offer a viable alternative to fuel propulsion, but the results so far are exciting. Truly, there seems to be no end to the amazing qualities of graphene.

By: Bryan Nelson

 

 

Is NASA one step closer to warp drive?

101896maincd1998766321200x900.jpg

Engage.NASA

Potentially good news for those who want to zip around our solar system, and beyond, at speeds approaching that of light — and maybe even faster.

NASA, according to NASASpaceFlight.com, is quietly claiming to have successfully tested a revolutionary new means of space travel that could one day allow for such insane speed, and to have done it in a hard vacuum like that of outer space for the first time.

The technology is based on the electromagnetic drive, or EM drive.

The science behind the EM drive is, well, complicated to say the least, but the basic idea is to convert electrical energy into thrust without propellant (the fuel in rockets), which should be impossible because it violates the law of conservation of momentum. That law states that momentum can only be changed by one of the forces described by Newton’s laws of motion — that’s where propellant normally comes in with traditional rockets.

If you want to dive into the “hows” and “whys” of all this, they’re discussed at length — by amateur enthusiasts as well as Ph.Ds and one of the NASA engineers actually working on the EM drive — on this NASASpaceFlight.com forum.

Scientists from the US, UK and China have demonstrated the EM drive over the past 15 years or so, but it’s been controversial, since as mentioned above, the EM drive would seem to violate classical physics. NASA’s tests in conditions that mimic outer space, however, bring a new sense of possibility to electromagnetic propulsion.

 

If such a technology really does work, and can be implemented in future spacecraft, the implications include faster, cheaper and more efficient travel around our solar system and beyond, and could even be a stepping stone to faster-than-light travel. Yes Trekkers, I do mean a warp drive.

Imagine a vehicle carrying half a dozen passengers and luggage to the moon in about four hours, or a multi-generational trip at almost one-tenth the speed of light to reach Alpha Centauri in less than a century. The technology that makes this a reality could be in testing right now in Texas at the Johnson Space Center.

NASA did not immediately respond to a request for comment, but we reached out to Paul March, the engineer who has been working on the EM drive at JSC and sharing some of the results on the forum mentioned above. He told us:

“My work at Eagleworks (the lab at JSC where the EM drive is being tested) is just a continuation of my work tackling the fundamental problem that has been hindering manned spaceflight from the termination of the Apollo moon program. That being the availability of a robust and cost-effective power and propulsion technology that can break us loose from the shackles of the rocket equation.”

The technology will still require more tests to verify that it’s the real deal (none of this has gone through anything like a rigorous peer review, except for the pretty vigorous discussion on the above forum), and any spacecraft that ends up using an EM drive will basically need a substantial onboard nuclear power plant that will need to be developed for such a specific use in space.

The notion of flying through space atop a nuclear reactor shouldn’t be any more scary than all the radiation flying through space outside our hypothetical future moon taxi though, so don’t worry.

 

 

Ocean on Saturn moon resembles habitable lakes on Earth

image: http://cdn.rt.com/files/news/3e/c0/d0/00/saturn-moon-life-space.si.jpg

Enceladus, shown in this recent image captured by the Cassini spacecraft, one of Saturn's moons (Reuters / NASA)

 

Enceladus, shown in this recent image captured by the Cassini spacecraft, one of Saturn’s moons (Reuters / NASA)

The newly-discovered subsurface ocean on Saturn’s icy moon of Enceladus is similar in makeup to some of the life-bearing salt lakes on Earth, a new US study suggested.

Astrobiologists believe this small moon is the best place to search for alien life in the Solar System.

The 505-kilometer-wide satellite is geologically active, with powerful geysers blasting through its ice shell.
Those geysers contain water which researchers suggest comes from an ocean located beneath the moon’s icy surface.

A new paper entitled ‘The pH of Enceladus,’ published on Wednesday in the journal ‪Geochimica et Cosmochimica Acta, looks into the chemical reactions that occur as Enceladus’ ocean water comes into contact with its rocky mantle.

The authors based their research on data gathered by NASA’s Cassini spacecraft, which has been orbiting Saturn since 2004.

They used mass-spectrometry measurements of the gases and ice grains in Enceladus’ plume to develop a model that estimates the saltiness and pH of the water in the moon’s inner ocean.

According to the US team’s findings, the ocean on Enceladus is likely salty and has a basic pH of 11 or 12, neutral pH being 7.

The same pH levels are found in ammonia-based glass-cleaning solutions, but some organisms on Earth are still capable of living in such conditions.

The high concentration of sodium chloride (NaCl) makes Enceladus’ ocean resemble terrestrial ‘soda lakes,’ such as ‪Mono Lake in California.

 

It’s good news for the those hunting alien life as a the fauna of Mono Lake includes brine shrimp and many different microbes.

The team’s model suggests that the ocean’s high pH is explained by serpentization, a process where metallic rocks from Enceladus’ upper surface are transformed into minerals due to contact with water.

Serpentization also leads to the production of molecular hydrogen (H2), which is a potential source of chemical energy for any life form in the ocean’s water, the paper said. ‪

“Molecular hydrogen can both drive the formation of organic compounds like amino acids that may lead to the origin of life, and serve as food for microbial life such as methane-producing organisms,” the study’s lead-author Christopher Glein, from the Carnegie Institution for Science in Washington, said in a statement.

Glein described serpentinization as a link between geological processes and biological processes on the moon.

“The discovery of serpentinization makes Enceladus an even more promising candidate for a separate genesis of life,” he stressed.

The hidden ocean was discovered on Enceladus earlier this year by Italian scientists from Sapienza University in Rome, who also analyzed Cassini data.

They said that active hydrothermal vents are likely to exist on Enceladus’ seafloor, providing conditions similar to those that gave rise to some of the first life forms on Earth.

Read more at http://endthelie.com/2015/05/08/cradle-of-alien-life-ocean-on-saturn-moon-resembles-habitable-lakes-on-earth/#aYHUOIUcJpEW18zX.99

&nbsp

 

 

 

ANYONE OUT THERE ??

Data has been flooding in from the nation’s latest space telescope, one with a 30-meter-diameter mirror (the Hubble’s, for comparison, was 2.4 meters). The initial searches for signs of life on exoplanets by 2020s telescopes found so many tantalizing hints. The new telescope, with thousands of times the capability, has searched hundreds of the nearest Earth-size exoplanets and found something astonishing: A large fraction show unusual chemistry in their atmospheres.

We are working hard to understand if any of the unusual chemistry can be attributed to gases produced by life. If geophysical or other contributions can be ruled out, we might establish that our galaxy is teeming with life, or at least microbial life.

If we instead hit a dead end with ambiguous chemical signals, we’ll need to go to the next step. Thanks to telomere gene therapy that has extended my life, I am willing and able to direct an even more capable space telescope, but that isn’t good enough. We will have to leave it to the next generations to figure out how to send the first interstellar space probes to actually travel up to tens of light years away to visit the other Earths.

 

 

NASA Is Seriously Revving Up The Search For Alien Life

  • NASA Is Seriously Revving Up The Search For Alien Life

A few weeks ago, NASA chief scientist Ellen Stofan made news by saying, “I think we’re going to have strong indications of life beyond Earth within a decade, and I think we’re going to have definitive evidence within 20 to 30 years.” It was a bold statement, but NASA is now backing those words with action.

The field of astrobiology just got a significant boost thanks an ambitious new alien-hunting initiative launched by NASA. Called NExSS, the initiative will bring together an impressive array of experts and teams across a variety of scientific fields.

The goal of NExSS — short for Nexus for Exoplanet System Science — is to improve our understanding of extrasolar planets, and how their stars and neighboring planets interact to support life. To achieve this, NASA has put together a multidisciplinary team consisting of earth scientists, planetary scientists, heliophysicists, and astrophysicists.

“This interdisciplinary endeavor connects top research teams and provides a synthesized approach in the search for planets with the greatest potential for signs of life,” noted Jim Green, NASA’s Director of Planetary science, in a statement. “The hunt for exoplanets is not only a priority for astronomers, it’s of keen interest to planetary and climate scientists as well.”

Since 1995, over 1,000 exoplanets have been discovered. Thousands of additional candidates are still waiting to be confirmed. The time has come, says NASA, for scientists to acquire a better understanding of these distant objects to learn how they might be capable of giving rise to life and how we might be able to detect their bio signatures from Earth using current and next-gen telescopic technologies.

By applying a “system science” approach, the teams will work to understand how biology interacts with the atmosphere, geology, oceans, and interior of a planet, and how host stars contribute to habitability. At the same time, the scientists will classify the diversity of worlds (including a “periodic table of planets”), assess potential habitability of exoplanets, and develop new alien-hunting tools and technologies.

Among the teams assembled, some notable contributions will come from: the University of Arizona, Tucson’s “Earth in Other Solar Systems” team; Hampton University, Virginia’s “Living, Breathing Planet” team; NASA’s own Solar System astrobiological initiative; and the Pennsylvania State University project studying the atmospheres of giant planets orbiting hot Jupiters.

This is very exciting stuff, especially in consideration of future projects such as the James Webb Space Telescope (JWST), the Transiting Exoplanet Survey Satellite (TESS), and the Wide-field Infrared Survey Telescope (WFIRST). Over the course of the next 10-to-20 years, astrobiologists may very well detect signs of alien life. But that alien life is bound to be microbial in nature. The search for extraterrestrial intelligence is another challenge altogether.

Image: NASA.


 

Enter The Space Plane

E-Vectors Space Company to build two type of space planes.  A suborbital, the Fire Fly 200  and a manned  unmanned plane that will be capable of traveling through deep space to Jupiter and beyond the Fire Fly  400.  Both space planes will take off vertically before accelerating to speed of 22,000 miles per hour using fusion /neutronic engines.   A spaceplane is an aerospace vehicle that operates as an aircraft in Earth’s atmosphere, as well as a spacecraft when it is in space.  It combines features of an aircraft and a spacecraft, which can be thought of as an aircraft that can endure and maneuver in the vacuum of space or likewise a spacecraft that can fly like an airplane.

As in a previous blog most of the construction would take place in space at the space factory using the 3 D printer with some of the components built  here on Earth.

 

 

 

 

 

 

Nasa’s Deep Space Exploration Vehicle

NASA’s Space Launch System, or SLS, is
an advanced launch vehicle for a new era of
exploration beyond Earth’s orbit into deep space.
SLS, the world’s most powerful rocket, will launch
astronauts in the agency’s Orion spacecraft on
missions to an asteroid and eventually to Mars,
while opening new possibilities for other payloads
including robotic scientific missions to places like
Mars, Saturn and Jupiter.
Offering the highest-ever payload mass and volume
capability and energy to speed missions through
space, SLS will be the most powerful rocket in
history and is designed to be flexible and evolvable,
to meet a variety of crew and cargo mission needs

Orion Exploration Flight Test 1