NASA’S “NEW SPACECRAFT” FOR DEEP SPACE TRAVEL

 

In early December, NASA will take an important step into the future with the first flight test of the Orion spacecraft — the first vehicle in history capable of taking humans to multiple destinations in deep space. And while this launch is an un-crewed test, it will be the first peek at how NASA has revamped itself since the end of the Space Shuttle Program in 2011.

While the space shuttle achieved many ground-breaking accomplishments, it was limited to flights in low-Earth orbit (approx. 250 miles high). Its major goal, over the program’s last 10 years, was to launch and assemble the International Space Station, where the risks and challenges of long duration human space flight can be addressed and retired. With the ISS construction complete, NASA is in the process of handing over supply and crew transportation missions to private industry, so NASA can focus on what’s next – deep space exploration. And this first flight test of Orion is a significant milestone on the path to get there.

The flight itself will be challenging. Orion will fly 3,600 miles above Earth on a 4.5-hour mission to test many of the systems necessary for future human missions into deep space. After two orbits, Orion will re-enter Earth’s atmosphere at almost 20,000 miles per hour, reaching temperatures near 4,000 degrees Fahrenheit, before its parachute system deploys to slow the spacecraft for a splashdown in the Pacific Ocean.

While this launch is an important step to taking humans farther than we’ve ever gone before, it is important to note that it also reflects the fact that, after 30 years of space shuttle missions dominating its human spaceflight activities, NASA has reevaluated everything – from its rockets and launch facilities to how it designs and manages its programs. With the Orion spacecraft, NASA wanted to develop a vehicle that could fly for decades with the flexibility to visit different destinations and safely return astronauts to Earth as the nation’s exploration goals evolve. As capable as the Apollo capsule was, the longest round trip mission to the Moon took 12 days. Orion is designed as a long-duration spacecraft that will allow us to undertake human missions to Mars – a two year round trip. In addition, NASA built enough capability into Orion so there is no need for redesign, or to start up a new program, as new destinations are identified.

Innovation and flexibility are also evident with the ground infrastructure. At Kennedy Space Center (KSC) in Florida, NASA has eliminated the ground systems and launch pads that were built specifically for the space shuttle. They have developed a “clean pad” approach that can be used by a variety of launch vehicles. The new streamlined infrastructure will be much more cost-efficient, reducing the time for on-the-pad processing from 30 days, the space shuttle’s timeline, to just five to six days.

The key to launching Orion on deep space exploration missions is NASA’s new “super rocket.” Known as the Space Launch System (SLS), it will be the most powerful rocket in history. The enormous power of the SLS will provide the capability to go farther into our solar system than humans have ever gone before. It will enable launches to other planets in less than half the time of any existing rocket. And, like Orion and the new ground systems at KSC, it is designed to be flexible and evolvable to meet a wide variety of crew and cargo mission requirements.

The SLS is an absolute game-changer for ambitious robotic missions to the outer planets and large unprecedented astronomical observatories. Those missions will build on the discoveries of Curiosity on Mars, the Hubble Space Telescope and its successor, the James Webb Space Telescope, and multiple robotic missions in the years ahead.

Through the development of the SLS and Orion, NASA has learned many lessons on how to streamline the design to make it more affordable than past systems. For the early missions, SLS will use heritage space shuttle hardware for the liquid engines and solid rocket boosters. Also, instead of initially building the “full-up” SLS, NASA has designed it to evolve by planning upgraded upper stages and boosters that future missions will require in the 2020’s and 2030’s. These innovations have allowed SLS to stay on a relatively flat budget throughout its design phase.

Even the way NASA manages its programs has been revamped. The Agency’s management structure for systems engineering and integration has been streamlined to increase communication and enhance decision-making. Strong communication has led to increased precision, and the potential cost avoidance is close to $100 million per year. Evidence of these savings can be seen in the successful completions of Preliminary Design Reviews for Orion, SLS and KSC ground systems.

As a nation, the U.S. has not sent crews beyond low Earth orbit since the last Apollo crew walked on the Moon in 1972. With Orion and SLS, America will have the fundamental capabilities to support missions taking the next steps into deep space, and with innovation and flexibility at the foundation of these programs, NASA is building a “Highway” for deep space exploration that will be sustainable for decades to come.

PLANET X the Destroyer

 Those familiar with either the writings of Zecharia Sitchin or the current internet rantings about “the return of Planet X” are likely familiar with the word “nibiru”. According to self-proclaimed ancient languages scholar Zecharia Sitchin, the Sumerians (a member of the indigenous non-Semitic people of ancient Babylonia. )  knew of an extra planet beyond Pluto. This extra planet was called Nibiru. Sitchin goes on to claim that Nibiru passes through our solar system every 3600 years. Some believers in Sitchin’s theory also refer to Nibiru as “Planet X”, the name given to a planet that is allegedly located within our solar system but beyond Pluto. Adherents to the “returning Planet X hypothesis” believe the return of this wandering planet will bring cataclysmic consequences to earth.The new information on Nibiru is more mysterious than its own origins. Not too many people know the true details of Nibiru, and why it exists in our solar system. Let me tell you some basics first about this planet. Planet Nibiru, which was referred by the Sumerians as Planet X, was supposedly the 12th planet in our solar system. The true meaning of planet Nibiru is ‘Planet of Crossing’. In the hydrophilic of Sumerians, and Egyptian, they talked about how planet Nibiru had an elliptical orbit than a normal horizontal orbit. The elliptical orbit goes in a roundabout very close to the sun on one end, while 80% of orbit away from the sun. The planet took around 750,000 years to come between Mars and Jupiter, and when it did, it created devastation on all the planets during its flyby. This is why the earthquake that are happening in Japan, Chile and other places, could be due to the fact that magnetic pull from Nibiru is increasing as it nears our plain. The pull from Nibiru will increase gravitational force of each planet in a rubber band effect.Many researchers are worried and trying to figure out why 10 major volcanoes along the ring of fire have suddenly come to life. Although it is not rare to have a few active at the same time, but 10 at the same time is highly unusual and causing quite a bit of concern.Some Nibiru trackers are reporting this could be evidence of Nibiru’s proximity to our planet and the gravitational effects it is causing as it pull on Earth. Increased volcanic activity is one of the symptoms that many have been predicting would occur as planet Nibiru nears our solar system.

They also point to how mainstream media is all but silent on this phenomenon which could be to keep people from looking to closely at what might be the real cause of this out of the ordinary volcano activity.

Another extremely rare occurrence happening along with the recent increased volcanic activity is that a volcano off the coast of Japan is actually creating a new island. The birth of a new island is extremely rare and hasn’t been seen in decades in these parts.

The existence of Nibiru has been a topic of heated debate amongst historians, Nibiru watchers and critics for decades. Mentions of Nibiru or Planet X have even made the mainstream news, most notoriously in the Washington Post on December 30, 1983 as well as other respected papers such as the Boston Globe.

Not always naming it “Nibiru”, they discuss the existence of a mysterious large planetary body far beyond Pluto orbiting on a different plane than the rest of the planets. This correlates with many researchers beliefs of Planet X’s long predicted path back through our solar system.

 

As Nibiru cuts through our solar system in retrograde motion to the other planets it performs its various duties such as displacing or replacing planets and causing general havoc in the process. Its passage is momentous but short taking only a few weeks or months at most, after which it disappears from view. It is fiery red in color with a debris-filled tail, and circling it are a number of moons which it sometimes uses as weapons to pound other planets. Nibiru or its moons were responsible for such feats as the destruction of Maldek and other planets which are now asteroid belts; the craters or surface scars on the Moon or planets of our solar system, as well as their varying axial tilts and orbits; the sinking of Atlantis and Noah’s Flood; and God knows what else. It is the physical link or “ferry” between our solar system and the dark star system.

IT WOULD BE GREAT IF YOU WOULD GIVE MY ADVERTISERS  A CLICK .             
 

 

 

 

 

The IXS Enterprise “Warp Ship”

 

The image above is Dutch designer Mark Rademaker’s CGI design concept; created to illustrate how NASA engineer Harold White’s IXS Enterprise “Warp ship” might look. White has been researching into possible methods of propelling space craft beyond the speed of light. The strongest theory involves the disruption of space-time in front and behind the craft. White claims he has calculated a plausible method that improves upon an earlier theory by physicist Miguel Alcubierre, and is working towards a proof of concept for the idea. Rademaker’s design shows large rings that would be used to create a “warp bubble” and was originally submitted for the Star Trek “Ships of the Line” 2014 calendar.

Warp propulsion is based on a theory that an object (like a spaceship) can move at speeds many times faster than the speed of light to go vast distances through space. It’s currently believed that if something reaches light speed, it would transform into energy and thus cease being whatever it used to be.

Not only that, but the fuel cost and time it would take to travel would make space voyages pretty unrealistic. However, warp propulsion gets around these obstacles by placing a spaceship within a warp field “bubble” of normal space, while the space surrounding the bubble moves extremely fast — basically warping the fabric of space-time.

Advanced Propulsion Theme Lead for NASA Engineering Directorate Harold White says creating technology to accomplish warp propulsion (a warp drive) is absolutely possible, and he’s even started work on creating it.

White explains that his team is currently working on complex math equations to help create and discover microscopic instances of these “warp bubbles.” If the results from his team’s experiments prove successful, it could be possible to create a warp engine capable of interstellar space travel. For perspective, he uses the example of traveling to Alpha Centauri (the closest star system to Earth) in just two weeks in Earth time.

[Image credit: Mark Rademaker]

Wow ! Some people want free advertisement on my website but don’t have the decency to check my advertisers, so I can make money Too.   So  UnAmerican    !!! 1     

 

 

 

Morpheus Demonstrates Key Capabilities

On May 28, NASA demonstrated that it can land an unmanned spacecraft on a rugged planetary surface in the pitch dark.

The free-flight test was the first of its kind for NASA’s Autonomous Landing Hazard Avoidance Technology, or ALHAT.

First night free-flight test of Morpheus lander with ALHAT technology
The first night free-flight test of NASA’s Morpheus prototype lander was conducted at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida.
Image Credit:
NASA

Morpheus  an unmanned spacecraft capable of carrying 1,100 pounds (499 kg) of cargo  powered its way up to more than 800 feet (244 m) into the dark Florida sky at NASA’s Kennedy Space Center using solely ALHAT’s Hazard Detection System for guidance.

The Hazard Detection System, assisted by three light detection and ranging (lidar) sensors, located obstacles  such as rocks and craters  and safely landed on the lunar-like hazard field a quarter mile away from the NASA Center. Lidar which stands for Light Detection and Ranging is a remote sensing method that uses light in the form of pulsed laser to measure ranges (variable distances) to the Earth.

“The team has been striving for almost eight years to reach this point of testing the ALHAT system in a relevant space-flight-like environment on Morpheus,” said Eric Roback, ALHAT flash lidar lead engineer at NASA’s Langley Research Center in Hampton, Virginia.

During testing, the Hazard Detection System pointed its sensor at the hazard field and made a mosaic of flash lidar three dimensional range images encompassing the hazard field.

 

first night free-flight test of NASA’ Morpheus prototype lander
Morpheus powered its way up to more than 800 feet into the Florida night sky at NASA’s Kennedy Space Center using solely ALHAT’s Hazard Detection System for guidance.
Image Credit:
NASA

“The flash lidar performed very well, and we could clearly identify rocks as small as one foot (0.3 m) in size from the largest range that Morpheus could give us, which was approximately a quarter mile,” (402 m) Roback said. “With this sensor we could even find the safest landing site in a pitch black crater.”

The Hazard Detection System then had to stitch the flash lidar images together to a three dimensional map of the landing site, analyze the map and select the best landing sites. Shortly after, the Doppler lidar measured the vehicle’s altitude and velocity to land precisely on the surface. The high-altitude laser altimeter provided data enabling the vehicle to land at the chosen landing site.

“Once this technology goes into service, the days of having to land 20 or 30 miles (32 to 48 km) from where you really want to land for fear of the hazardous craters and rocks will be over,” Roback said. “Then we can land near the truly interesting science and near the critical resources that will be needed for eventual colonization, and we can do it over and over again safely.”

The ALHAT Hazard Detection System brings together expertise from three different NASA Centers. Langley created the lidar sensors. NASA’s Jet Propulsion Laboratory in Pasadena, California, developed the pointing and real-time image processing technology, and NASA’s Johnson Space Center in Houston developed the guidance, navigation and control technology.

The Advanced Exploration Systems Division of NASA’s Human Exploration and Operations Mission Directorate manages ALHAT and Morpheus. Advanced Exploration Systems pioneers new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit.   I would appreciate your support by visiting the advertisers below .

Wow ! Some people want free advertisement on my website but don’t have the decency to check my advertisers, so I can make money Too.   So  UnAmerican    !!! 1     

 

 

 

NASA is one step closer to launching its newest spacecraft designed for humans.

NASA's Orion spacecraft, preparing for it's first flight, departs the Neil Armstrong Operations and Checkout Building on its way to the Payload Hazardous Servicing Facility at the Kennedy Space Center, Thursday, Sept. 11, 2014, in Cape Canaveral, Fla. Orion is scheduled for a test flight in early December. (AP Photo/John Raoux)

Workers at Kennedy Space Center gathered to watch as the Orion capsule emerged from its assembly hangar months from its first test flight. The capsule slowly made its way to its fueling depot atop a 36-wheel platform. The capsule and its attached service module and adapter ring stretched 40 feet high. Space center employees lined up along the rope barricade to snap pictures of Orion, NASA’s lofty follow-on to the now-retired space shuttle program.

During its test flight, the unmanned capsule will shoot more than 3,600 miles into space and take two big laps around Earth before re-entering the atmosphere at 20,000 mph and parachuting into the Pacific off the San Diego coast.

NASA's Orion spacecraft, preparing for it's …

The second Orion flight won’t occur until around 2018 when another unmanned capsule soars atop NASA’s new mega-rocket, still under development, called SLS for Space Launch System. NASA intends to put astronauts aboard Orion in 2021 for deep space exploration; each capsule can accommodate up to four astronauts. The plan is to use Orion for getting humans to asteroids and Mars .There will be no space station ferry trips for Orion.

While Orion may resemble an oversize Apollo capsule on the outside, everything inside and out is modern and top-of-the-line. For Orion’s dry run, the  capsule will have hunks of aluminum in place of seats for ballast, and simulators instead of actual cockpit displays. A Delta IV rocket will do the heavy lifting.

NASA's Orion spacecraft, preparing for it's …

Orion has its roots in the post-Columbia shuttle era; it originated a decade ago as a crew exploration vehicle to get astronauts beyond low Earth orbit and managed to survive the cancellation of the Constellation moon project. The Constellation project was the completion of the International Space Station and a return to the moon no later than 2020 with the planet  Mars as the ultimate goal.

Wow ! Some people want free advertisement on my website but don’t have the decency to check my advertisers, so I can make money Too.   So  UnAmerican    !!! 1     

 

 

 

 

 

 

 

Jupiter’s Moon Europa

Jupiter’s moon Europa.

We have decided to send a Manned Mission to explore Jupiter’s moon Europa. It is the six closest moon to Jupiter.   Jupiter is the 5th planet from the Sun and is the largest planet in the Solar System. Jupiter is classified as a gas giant with mass one-thousandth of that of the Sun but is two and a half times the mass of all the other planets in the Solar System combined.

Europa has an outer layer of water around  (62 mi) thick; some as frozen-ice upper crust, some as liquid ocean underneath the ice. The layer is likely a salty liquid water ocean.  Europa contains a metallic iron core. Europa has emerged as one of the top locations in the Solar System in terms of  potentially hosting extraterrestrial  life that could exist in its under-ice ocean.  Life in such an ocean could possibly be similar to  life on Earth in the deep ocean. The likely presence of liquid water on Europa has spurred calls to send a  manned mission to investigate.

An order was place with the E-vectors Space factory  to build the spacecraft that will taking the three  astronaut and three robots to the moon Europa.    The engine that will carry them is  neutronic that can navigate in the deep ocean ,the atmosphere,and in deep space.   All three are categorized as water elements with outer space being the thicker of the three.  The neutronic engine creates fusion energy capable of speeds to reach Jupiter’s moon in 659 days or approximately  1 year and 9 months,when Jupiter and Earth are aligned.

The astronauts will not land on the surface of Europa but instead orbit the moon and communicate with our Deep Space Station. The robots will be used to explore the surface and the under ice ocean.    Information transmitted by the robots will be sent to the orbiting spacecraft to determine ,confirm the habitability ,and the characteristic of the water within and below Europa’s icy shell.

Artist’s concept of the crybot a thermal drill, seen upper left) and its deployed ‘hydrobot’ submersible

 

 

Water vapor plums have been detected on Europa due to the under ice oceans tides and gravitational stress from the planet Jupiter.  The plums are considered simular to volcanoes pewing magma but instead water.  Life on the surface could be possible closest to these plums due to the heat which is created.

Wow ! Some people want free advertisement on my website but don’t have the decency to check my advertisers, so I can make money Too.   So  UnAmerican    !!! 1     

 

 

 

 

 

 

Nasa’s 3D Printer In Zero Gravity

 

The 3D printer that will be launched to the space station in fall 2014 is tested at NASA’s Marshall Space Flight Center.
Image Credit:
NASA

America has always been a nation of tinkerers, inventors, and entrepreneurs. In recent years, a growing number of Americans have gained access to technologies such as 3D printers, laser cutters, easy-to-use design software, and desktop machinery. These tools are enabling more Americans to design and Make almost anything, and the applications to space exploration will help our astronauts to be less reliant on materials from Earth as they explore farther out into the solar system.

 

NASA’s 3D Printing in Zero-G ISS Technology Demonstration will demonstrate the capability of utilizing a Made In Space 3D printer for in-space additive manufacturing technology. This is the first step toward realizing an additive manufacturing, print-on-demand “machine shop” for long-duration missions and sustaining human exploration of other planets, where there is extremely limited ability and availability of Earth-based logistics support. If an astronaut tool breaks, future space pioneers won’t be able to go to the local hardware store to purchase a replacement, but with 3D printing they will be able to create their own replacement or create tools we’ve never seen before. For NASA as well as the Maker community, 3D printing provides end-to-end product development.

 

Image showing a 3D printer printing
The 3D printer prints a common part that is used aboard the space station.
Image Credit:
NASA

NASA, in conjunction with the American Society of Mechanical Engineers Foundation, has issued Future Engineers” printing challenges for the first 3D printer aboard the International Space Station. Middle and high school students will design items for 3D printing on ISS, and the winning student will watch from NASA’s Payload Operations Center with the mission control team as the item is printed in space.  NASA and the ASME Foundation will also promote these projects and others in Maker Community Challenge Showcases, in which student participants would have the opportunity to have their 3D designs printed at local Maker community locations and student participants would showcase their 3D designs in on online open hardware design repository.

Wow ! Some people want free advertisement on my website but don’t have the decency to check my advertisers, so I can make money Too.   So  UnAmerican    !!! 1     


Made In Space 3-D Printer

3D printer to fly to space in august, sooner than planned

A 3-D printer intended for the International Space Station has passed its NASA certifications with flying colors—earning the device a trip to space sooner than expected. The next Dragon spacecraft, scheduled to launch in August, will carry the Made In Space printer on board.

“Passing the final tests and shipping the hardware are significant milestones, but they ultimately lead to an even more meaningful one – the capability for anyone on Earth to have the option of printing objects on the ISS. This is unprecedented access to space,” stated Made In Space CEO Aaron Kemmer.

This 3-D printer will be the first to be used in orbit. Officials have already printed out several items on the ground to serve as a kind of “ground truth” to see how well the device works when it is installed on the space station. It will be put into a “science glovebox” on the International Space Station and print out 21 demonstration parts, such as tools.

“The next phase will serve to demonstrate utilization of meaningful parts such as crew tools, payload ancillary hardware, and potential commercial applications such as cubesat components,” Made In Space added in a statement.

Once fully functional, the 3-D printer is supposed to reduce the need to ship parts from Earth when they break. This will save a lot of time, not to mention launch costs, the company said. It could also allow astronauts to manufacture new tools on the fly when “unforeseen situations” arise in orbit.

Another NASA 3-D printer contract, given to the Systems & Materials Research Cooperation, could lead to a device to manufacture food for crew members.

Wow ! Some people want free advertisement on my website but don’t have the decency to check my advertisers, so I can make money Too.   So  UnAmerican    !!! 1     

 

 

 

NASA Says Puzzling New Space Drive Can GenerateThrust Without Propellant

By 

August 2, 2014                                                                                                                                                                                                                                                                                  

According to a puzzling report, a new thruster design appears to be able to accelerate a c...

According to a puzzling report, a new thruster design appears to be able to accelerate a craft without the use of propellant (Image: Cannae)

A NASA study has recently concluded that the “Cannae Drive,” a disruptive new method of space propulsion, can produce small amounts of thrust without the use of propellant, in apparent discordance with Newton’s third law. According to its inventor, the device can harness microwave radiation inside a resonator, turning electricity into a net thrust. If further verified and perfected, the advance could revolutionize the space industry, dramatically cutting costs for both missions in deep space and satellites in Earth orbit.

 

The basic principle behind space propulsion is very simple: for every action, there is an equal and opposite reaction. Use a rocket engine to throw mass one way, get propelled the other way. And according to the law of conservation of momentum, the more mass you throw behind you and the faster you throw it, the stronger your forward thrust will be.

One consequence for space travel is that, to counter Earth’s gravity and reach orbital velocity, rockets need to carry a very large amount of propellant: For instance, in the now-retired Space Shuttle, the mass of the fuel was almost twenty times greater than the payload itself. In satellites the impact is smaller, but still very significant: for geostationary satellites, fuel can make up as much as half the launch weight, and that makes them more expensive to launch and operate.

But now, a NASA study has concluded that a new type of spacecraft propulsion is able to generate thrust without propellant. This appears to violate the law of conservation of momentum: in other words, if no mass (fuel or otherwise) is being ejected from the system, where is the thrust coming from? Where is the equal and opposite reaction?

The thruster appears to work by resonating microwave radiation to produce a net force (Ima...

According to its inventor, US scientist Guido Fetta, the thruster works as a resonating cavity for microwave radiation. The cavity redirects the radiation pressure to create an unbalanced force, and that force produces a net thrust.

In its study NASA didn’t attempt to explain the phenomenon, and instead contented itself with verifying that the system did indeed generate a small amount of thrust, between 30 and 50 micro-Newtons. This is a tiny amount, only enough to levitate a mass of three to five milligrams (a few eyelashes) here on Earth; but, astonishingly, it is a net thrust nonetheless.

“Test results indicate that the RF resonant cavity thruster design, which is unique as an electric propulsion device, is producing a force that is not attributable to any classical electromagnetic phenomenon and therefore is potentially demonstrating an interaction with the quantum vacuum virtual plasma,” the study concludes.

The system has many striking similarities with the EmDrive, designed by British aerospace engineer Roger Shawyer, although the explanation that Shawyer provides for the working mechanism is quite different from Fetta’s or NASA’s.

According to one peer-reviewed paper, the EmDrive thruster was able to produce 720 mN of t...

According to one peer-reviewed paper, the EmDrive thruster was able to produce 720 mN of thrust from an electricity input of 2.5 kW (Photo: EmDrive)

“At first sight the idea of propulsion without propellant seems impossible,” says Shawyer. “However, the technology is firmly anchored in the basic laws of physics and following an extensive review process, no transgressions of these laws have been identified.”

According to Shawyer, the thruster works because of relativistic effects: the microwaves are moving at a significant fraction of the speed of light at both ends of the resonator, and so, he claims, the resonator and the microwaves have two separate frames of reference, with the two forming an open system that ultimately doesn’t violate the laws of physics, conservation of momentum included.

The interesting thing about EmDrive is that, back in 2009, a Chinese peer-reviewed journal tested Shawyer’s thruster design, registering 720 mN of thrust at an input power of 2.5 kW. That’s enough to make a tennis ball hover, and then some; in fact, if the results are confirmed, such levels of thrust would already be practical for satellitar applications.

Salient characteristics of the EmDrive compared to a more conventional ion propulsion syst...

Salient characteristics of the EmDrive compared to a more conventional ion propulsion system (Image: EmDrive)

The system could generate electricity from solar panels, and because it is much lighter than current thrusters, it could more than halve the weight launch of satellites, leading to very significant reductions in launch costs. A practical microwave thruster could also meaningfully extend the lifetime of satellites and pave the way for deep space robotic missions.

Even beyond that, Shawyer claims that the second generation of his fuel-less thrusters, based on superconductor technology, will be capable of producing an impressive specific thrust of 30 kN per kW of input energy. “Thus for 1 kilowatt (typical of the power in a microwave oven) a static thrust of 3 tonnes (3.3 tons) can be obtained, which is enough to support a large car. This is clearly adequate for terrestrial transport applications.”

But before we start talking Sun-powered flying cars and weekend trips to Pluto, the scientific community will undoubtedly need to dissect the experiment with great care and independently verify whether the tiny net thrust reported by NASA could after all be attributed to some external cause that the researchers didn’t account for.

Sources: CannaeEmDrive via Wired

Orion Spacecraft Comes Together

The world’s largest heat shield, measuring 16.5 feet in diameter, has been successfully attached to the Orion spacecraft. The heat shield is made from a single seamless piece of Avcoat ablator. It will be tested on Orion’s first flight in December 2014 as it protects the spacecraft from temperatures reaching 4000 degrees Fahrenheit.

The uncrewed flight, dubbed Exploration Flight Test-1(EFT-1), will test the spacecraft for eventual missions that will send astronauts to an asteroid and eventually Mars. 

The Orion crew module for Exploration Flight Test-1 is shown in the Final Assembly and System Testing (FAST) Cell, positioned over the service module just prior to mating the two sections together. The FAST cell is where the integrated crew and service modules are put through their final system tests prior to rolling out of the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. Technicians are in position to assist with the final alignment steps once the crew module is nearly in contact with the service module. In December, Orion will launch 3,600 miles into space in a four-hour flight to test the systems that will be critical for survival in future human missions to deep space.

Image Credit: NASA/Rad Sinyak