Bound for Mars, a robot arrives in Boston for training

Valkyrie, NASA’s humanoid robot prototype that Northeastern researchers will perform advanced research and development on, arrived at UMass Lowell on April 6.
Valkyrie, NASA’s humanoid robot prototype that Northeastern researchers will perform advanced research and development on, arrived at UMass Lowell on April 6.

ASTRONAUTS SPEND YEARS training before they go into space. The same is true for their robot counterparts, two of which recently arrived in Massachusetts to be put through their paces in preparation for a long-off mission to Mars.

Valkyrie is built like a linebacker — 6’2” tall and 275 pounds. Its job is to go to Mars and maintain equipment in anticipation of the arrival of astronauts, potentially years after Valkyrie first touches down on the Red Planet.

“If you don’t start your car for two years, do you expect it will start when you return?” says Taskin Padir, a professor of engineering at Northeastern University who will be leading the university’s work with Valkyrie. “Humanoid robots will be part of the pre-deployment mission to Mars and will maintain equipment prior to the astronauts’ arrival.”

A manned mission to Mars is a high priority for NASA, which hopes to achieve the feat by the 2030s. As conceived, the expedition would require NASA to send equipment like rovers and a human habitat to Mars years before the astronauts launch. This is due to the relative orbits of Earth and Mars, which make it only practical to launch from here to there every two years.

“You need to pre-position assets like a habitat, a power supply. Whatever you need on the surface, all that’s done years before an astronaut gets there,” says William Verdeyen, NASA project manager for Valkyrie.

Valkyrie’s destination may be exotic, but the robot’s tasks will be mundane. The Johnson Space Center in Houston will beam instructions to Mars (the transmission takes about 20 minutes), and the robot will carry them out autonomously. Likely jobs include repairing electronic boards, cutting cords, and changing batteries — all maneuvers that require dexterity, which is complicated to engineer.

“A [good] analogy is replacing batteries in a flashlight,” says Padir. “If we can do that with Valkyrie at the end of two years, that would be a great accomplishment from our perspective.”

Over the next two years, the Northeastern team will work on improving Valkyrie’s performance, especially at these kinds of fine-motor maintenance tasks. A separate team at MIT will be doing similar work with another copy of the robot.

Most of Valkyrie’s movements will take place inside the human habitat — a known environment for the engineers, which makes it relatively easy to navigate. Sometimes, though, the robot will have to venture outside, like to brush dust off of solar panels. There, things get more treacherous. And if Valkyrie falls on the rough, uneven Martian surface, there’s always the risk it will never be able to get back up. Fortunately, though, in all these tasks, time is going to be on Valkyrie’s side.

“This robot will have a lot of free time on Mars,” says Padir. “If your task is to clean a few solar panels in the next week, you don’t have to run.”

 

SpaceX delivers world’s 1st inflatable room for astronauts

By MARCIA DUNN | April 10, 2016 | 12:05 PM EDT

In this frame taken from video from NASA TV, the SpaceX Dragon cargo ship is captured by a robot arm from the International Space Station, Sunday April 10, 2016. A SpaceX Dragon cargo ship arrived at the International Space Station on Sunday, two days after launching from Cape Canaveral, Florida. Station astronauts used a big robot arm to capture the Dragon, orbiting 260 miles above Earth. (NASA TV via AP)

CAPE CANAVERAL, Fla. (AP) — SpaceX has made good on a high-priority delivery: the world’s first inflatable room for astronauts.

A SpaceX Dragon cargo ship arrived at the International Space Station on Sunday, two days after launching from Cape Canaveral. Station astronauts used a robot arm to capture the Dragon, orbiting 250 miles above Earth.

The Dragon holds 7,000 pounds of freight, including the soft-sided compartment built by Bigelow Aerospace. The pioneering pod — packed tightly for launch — should swell to the size of a small bedroom once filled with air next month.

It will be attached to the space station this Saturday, but won’t be inflated until the end of May. The technology could change the way astronauts live in space: NASA envisions inflatable habitats in a couple decades at Mars, while Bigelow Aerospace aims to launch a pair of inflatable space stations in just four years for commercial lease.

For now, the Bigelow Expandable Activity Module — BEAM for short — will remain mostly off-limits to the six-man station crew. NASA wants to see how the experimental chamber functions, so the hatch will stay sealed except when astronauts enter a few times a year to collect measurements and swap out sensors.

This is SpaceX’s first delivery for NASA in a year. A launch accident last June put shipments on hold.

SpaceX flight controllers at company headquarters in Hawthorne, California, applauded when the hefty station arm plucked Dragon from orbit. A few hours later, the capsule was bolted securely into place.

“It looks like we caught a Dragon,” announced British astronaut Timothy Peake, who made the grab. “There are smiles all around here,” NASA’s Mission Control replied. “Nice job capturing that Dragon.”

SpaceX is still reveling in the success of Friday’s booster landing at sea.

For the first time, a leftover booster came to a solid vertical touchdown on a floating platform. SpaceX chief executive Elon Musk wants to reuse boosters to save money, a process that he says will open access to space for more people in more places, like Mars. His ambition is to establish a city on Mars.

NASA also has Mars in its sights and looks to send astronauts there in the 2030s. In order to focus on that objective, the space agency has hired U.S. companies like SpaceX to deliver cargo and, as early as next year, astronauts to the space station. U.S. astronauts currently have to hitch rides on Russian rockets.

In a sign of these new commercial space times, a Dragon capsule is sharing the station for the first time with Orbital ATK’s supply ship named Cygnus, already parked there two weeks. This is also the first time in five years that the compound has six docking ports occupied: Dragon, Cygnus, two Russian Progress freighters and two Russian Soyuz crew capsules.

The Dragon will remain at the station for a month before returning to Earth with science samples, many of them from one-year spaceman Scott Kelly. He ended his historic mission last month. Cygnus will stick around a little longer.

50% off All-Terrain for Galaxy Tab 3!

China has had a telescope on the moon for the past two years

China has had a telescope on the moon for the past two years

China has had a telescope on the moon for the past two years
Point a telescope at the moon, and you might just see one looking back. Chinese researchers have reported that their robotic telescope, the first of its kind, has been operating flawlessly ever since it landed on the moon in 2013.

The 15-centimetre telescope is mounted on the Chang’e 3 lander, which touched down on the lunar surface in December 2013. Chang’e 3 (pictured above) carried the Yutu rover, which repeatedly struggled to survive the lunar night and ceased working in March this year – but the lander is still going strong.

The telescope sees in ultraviolet light, making it particularly suited for observations that aren’t possible here on Earth. “There is no atmosphere on the moon, so unlike Earth, the ultraviolet light from celestial objects can be detected on the moon,” says Jing Wang of the National Astronomical Observatories in Beijing, China, who is in charge of the telescope. And since the moon rotates 27 times more slowly than the Earth, the scope can stay fixed on the same star for a dozen days without interruption, he says.

Snapping Earth
In a paper published this week, Wang and his colleagues detail the first 18 months of the telescope’s operation, during which it has observed for 2000 hours and monitored 40 stars. The team also captured a picture of the Pinwheel galaxy, shown below.

China has had a telescope on the moon for the past two years

Astronauts on the Apollo 16 mission had a manually operated UV telescope, which they used to take pictures of Earth, stars and the Large Magellanic Cloud. But the Chinese telescope is the first to be operated remotely from Earth.

That’s a challenge, because the moon is a hostile environment, full of charged and abrasive lunar dust that can get into equipment and destroy electronics, as Yutu’s troubles demonstrate. To counter this, the telescope is stowed within Chang’e 3 during sunrise and sunset on the moon, when dust is thought to be at its worst, and has survived much longer than its expected one year life. Wang says the scope is still working today, and the team are awaiting a decision to continue its mission past the end of this year.

Journal reference: arxiv.org/abs/1510.01435

Image information (from top): The Chang’e 3 lander (credit: Xinhua/Corbis); Picture of the Pinwheel galaxy captured by the telescope on the moon lander (credit: Chinese Academy of Sciences/The Bruce Murray Space Image Library/The Planetary Society)

By Jacob Aron

Inflatable space elevator gets a lift

Top floor, please.Thoth Technologies

Technically speaking, getting to space hasn’t become any easier over the past half century or so. It still requires using huge rockets to create a massive enough amount of force to push a payload beyond the grip of Earth’s gravity.

Enter the concept of the space elevator, which uses much simpler gravity-defying technologies to access space.

So far, most space elevator concepts have been the stuff of sci-fi, and any plans to actually build one have remained on the rather distant horizon. But “push button” access to space took a step toward reality in late July when the US Patent and Trademark Office granted a patent to a Canadian company for its invention of an inflatable space elevator tower.

Thoth Technology, based in Pembroke, Ontario, devised a tower design using pressurized segments that reach up to 20 kilometers (12.4 miles) into the stratosphere where a platform could be constructed for purposes of communications, tourism or as a launch platform for reaching space. Unlike blasting off from near sea level, as most space launches do now, getting into orbit or beyond from the top of a space elevator more than 20 times taller than the highest structures on Earth would be more like an aircraft takeoff.

“Astronauts would ascend to 20 km by electrical elevator. From the top of the tower, space planes will launch in a single stage to orbit, returning to the top of the tower for refueling and re- flight,” Brendan Quine, the inventor, said in a statement.

This elevator is far less ambitious than others we’ve reported on like plans from Japan’s Obayashi Corporation, which hopes to extend a space  elevator quarter of the way to the moon by 2050.

The company sees space elevators leading to a new era of space travel when paired with other new technologies like self-landing rockets of the kind that SpaceX is working on.

Getting to that point will involve some new innovations that this patent doesn’t really address, however. The invention here is focused on the construction of the tower itself, but how to construct and maintain a strong, reliable elevator cable 12 miles long is the real challenge in the space elevator universe. In fact, it’s the focus of a space elevator conference taking place later this month.

The patent does suggest “the mechanism for elevating and lowering cars may be provided by frictional contact, at least one winch mechanism located along the length of the elevator core structure, or by inductive means” but each of those mechanisms would still need to be invented or customized to this design.

For now, we’re stuck having to ride fire to space, but the “slow space” movement is well under way and the invention of the new genre of space elevator music can’t be far behind.

                                                    Image result for space elevator

https://stacksocial.com?aid=a-t05y2r3p

3D Printers to Revolutionise Space Travel Within Two Year

3D printing
Astronaut Robert L. Satcher Jr. works outside the International Space Station in 2009. NASA hopes that 3D printing will allow astronauts to set up permanent habitats in the future. NASA/HANDOUT/REUTERS

NASA are aiming to introduce 3D printers into spacecraft within two years, allowing astronauts to set up permanent habitats on other planets and even print their own food.

In an interview with Newsweek, NASA’s 3D printing chief Niki Werkheiser says the technology will revolutionize space travel by allowing astronauts to be away from year for years on exploration missions without relying on ground control.

Current costs for space transportation are $10,000 per pound of mass. The development therefore has the potential to save millions of dollars as astronauts can travel light and print essentials on demand whilst in space.

NASA is currently developing its largest rocket yet, the Space Launch System (SLS). The SLS is due to make its first test flight in 2017 and Werkheiser says her team are working to get a 3D printer on-board.

So far, Werkheiser’s team at NASA’s Marshall Space Flight Center in Alabama have produced several rocket components and a small wrench with the technology and yesterday the team announced the first successful print of a copper engine part for rockets.

However, they are working on much more exciting projects, including printing parts for a small shelter using substitutes for Martian and lunar sand – the theory being that astronauts could one day use the printers to build themselves habitats on extraterrestrial surfaces.

“The bottom line is being able to print anything you need in orbit. When we live on the ground, we don’t think much about running to Home Depot if something breaks but when you’re in space, even tiny things make a difference,” says Werkheiser.

The space agency is also funding a Texas-based company which is researching printing food, and has already produced prototype results in the form of printed pizza.

Other projects include developing a recycler which breaks down food wrappers into filament which the printer could convert into useful tools like circuit boards and batteries.

Werkheiser is optimistic that commercial applications of the technology means 3D printing in space will not be a thing of the future for long.

3D products are already being touted as offering a solution to homelessness and a means of creating human organs for those in need of transplants.

“The beautiful thing about 3D printing is that you’re going to see a pretty rapid evolution of commercial development. It’s going to happen,” says Werkheiser.

NASA has spent some $3m on the In-Space Manufacturing project which Werkheiser heads up.

The prototype 3D printer used on the International Space Station is the size of a small microwave and prints objects the size of an iPhone 6.

It produces objects by a process known as additive construction, using plastic filament as ink and constructing objects by a layering technique. Instructions are uplinked to the printer from ground control via email.

Werkheiser’s team are working on introducing metal filament to allow the printer to produce sturdier tools.

However, they are still working to overcome certain challenges posed by manufacturing in microgravity – for example, whether the layers of heated plastic form strong bonds when layered on top of each other in the absence of gravity.

Nevertheless, Werkheiser believes the technology will provide the key to allowing astronauts to live in space with the same freedom as on earth.

“This suite of capabilities will enable us to operate and live in space as we do on the ground. You need to get that autonomy in space and this is the secret sauce to getting there.”

 

 

Nasa’s Europa Mission take another step toward reality

 

NASA’s current plan for exploring Europa has just passed its first major review, proving that it’s feasible, unlike any of the previous ideas the agency’s scientists cooked up. America’s space agency has been developing mission ideas for Jupiter’s moon for years and even considered sending a lander to the satellite as recently as a year ago. Its scientists also once thought of sending a spacecraft to orbit Europa, but they ended up having to scrap that plan: the moon is bathed in Jupiter’s radiation, which would quickly kill any vessel that’s constantly exposed to it. So, instead of a lander or a Europa orbiter, NASA will send out a spacecraft in the 2020s designed to orbit Jupiter itself.

As the agency revealed in May, that spacecraft will be equipped with nine imaging, radar, magnenometry and spectometry tools to study the moon’s ice crust and the subsurface ocean that’s likely underneath it. The vehicle will fly by Europa 45 times during its mission period, and it will use every chance it gets to know more about the natural satellite. It’ll even be equipped to gather liquid/gas samples, in case the moon really does erupt plumes of water into space. NASA’s Jet Propulsion Laboratory has been studying the mission formally known as the Clipper concept since 2011, with help from the Johns Hopkins University Applied Physics Laboratory (APL). Now, that concept is ready to enter development phase, and if all goes well, we’ll finally know if there’s life on Jupiter’s moon.

 

 

 

 

Enter The Space Plane

E-Vectors Space Company to build two type of space planes.  A suborbital, the Fire Fly 200  and a manned  unmanned plane that will be capable of traveling through deep space to Jupiter and beyond the Fire Fly  400.  Both space planes will take off vertically before accelerating to speed of 22,000 miles per hour using fusion /neutronic engines.   A spaceplane is an aerospace vehicle that operates as an aircraft in Earth’s atmosphere, as well as a spacecraft when it is in space.  It combines features of an aircraft and a spacecraft, which can be thought of as an aircraft that can endure and maneuver in the vacuum of space or likewise a spacecraft that can fly like an airplane.

As in a previous blog most of the construction would take place in space at the space factory using the 3 D printer with some of the components built  here on Earth.

 

 

 

 

 

 

Nasa’s Deep Space Exploration Vehicle

NASA’s Space Launch System, or SLS, is
an advanced launch vehicle for a new era of
exploration beyond Earth’s orbit into deep space.
SLS, the world’s most powerful rocket, will launch
astronauts in the agency’s Orion spacecraft on
missions to an asteroid and eventually to Mars,
while opening new possibilities for other payloads
including robotic scientific missions to places like
Mars, Saturn and Jupiter.
Offering the highest-ever payload mass and volume
capability and energy to speed missions through
space, SLS will be the most powerful rocket in
history and is designed to be flexible and evolvable,
to meet a variety of crew and cargo mission needs

Orion Exploration Flight Test 1

 

NASA’S “NEW SPACECRAFT” FOR DEEP SPACE TRAVEL

 

In early December, NASA will take an important step into the future with the first flight test of the Orion spacecraft — the first vehicle in history capable of taking humans to multiple destinations in deep space. And while this launch is an un-crewed test, it will be the first peek at how NASA has revamped itself since the end of the Space Shuttle Program in 2011.

While the space shuttle achieved many ground-breaking accomplishments, it was limited to flights in low-Earth orbit (approx. 250 miles high). Its major goal, over the program’s last 10 years, was to launch and assemble the International Space Station, where the risks and challenges of long duration human space flight can be addressed and retired. With the ISS construction complete, NASA is in the process of handing over supply and crew transportation missions to private industry, so NASA can focus on what’s next – deep space exploration. And this first flight test of Orion is a significant milestone on the path to get there.

The flight itself will be challenging. Orion will fly 3,600 miles above Earth on a 4.5-hour mission to test many of the systems necessary for future human missions into deep space. After two orbits, Orion will re-enter Earth’s atmosphere at almost 20,000 miles per hour, reaching temperatures near 4,000 degrees Fahrenheit, before its parachute system deploys to slow the spacecraft for a splashdown in the Pacific Ocean.

While this launch is an important step to taking humans farther than we’ve ever gone before, it is important to note that it also reflects the fact that, after 30 years of space shuttle missions dominating its human spaceflight activities, NASA has reevaluated everything – from its rockets and launch facilities to how it designs and manages its programs. With the Orion spacecraft, NASA wanted to develop a vehicle that could fly for decades with the flexibility to visit different destinations and safely return astronauts to Earth as the nation’s exploration goals evolve. As capable as the Apollo capsule was, the longest round trip mission to the Moon took 12 days. Orion is designed as a long-duration spacecraft that will allow us to undertake human missions to Mars – a two year round trip. In addition, NASA built enough capability into Orion so there is no need for redesign, or to start up a new program, as new destinations are identified.

Innovation and flexibility are also evident with the ground infrastructure. At Kennedy Space Center (KSC) in Florida, NASA has eliminated the ground systems and launch pads that were built specifically for the space shuttle. They have developed a “clean pad” approach that can be used by a variety of launch vehicles. The new streamlined infrastructure will be much more cost-efficient, reducing the time for on-the-pad processing from 30 days, the space shuttle’s timeline, to just five to six days.

The key to launching Orion on deep space exploration missions is NASA’s new “super rocket.” Known as the Space Launch System (SLS), it will be the most powerful rocket in history. The enormous power of the SLS will provide the capability to go farther into our solar system than humans have ever gone before. It will enable launches to other planets in less than half the time of any existing rocket. And, like Orion and the new ground systems at KSC, it is designed to be flexible and evolvable to meet a wide variety of crew and cargo mission requirements.

The SLS is an absolute game-changer for ambitious robotic missions to the outer planets and large unprecedented astronomical observatories. Those missions will build on the discoveries of Curiosity on Mars, the Hubble Space Telescope and its successor, the James Webb Space Telescope, and multiple robotic missions in the years ahead.

Through the development of the SLS and Orion, NASA has learned many lessons on how to streamline the design to make it more affordable than past systems. For the early missions, SLS will use heritage space shuttle hardware for the liquid engines and solid rocket boosters. Also, instead of initially building the “full-up” SLS, NASA has designed it to evolve by planning upgraded upper stages and boosters that future missions will require in the 2020’s and 2030’s. These innovations have allowed SLS to stay on a relatively flat budget throughout its design phase.

Even the way NASA manages its programs has been revamped. The Agency’s management structure for systems engineering and integration has been streamlined to increase communication and enhance decision-making. Strong communication has led to increased precision, and the potential cost avoidance is close to $100 million per year. Evidence of these savings can be seen in the successful completions of Preliminary Design Reviews for Orion, SLS and KSC ground systems.

As a nation, the U.S. has not sent crews beyond low Earth orbit since the last Apollo crew walked on the Moon in 1972. With Orion and SLS, America will have the fundamental capabilities to support missions taking the next steps into deep space, and with innovation and flexibility at the foundation of these programs, NASA is building a “Highway” for deep space exploration that will be sustainable for decades to come.

Jupiter’s Moon Europa

Jupiter’s moon Europa.

We have decided to send a Manned Mission to explore Jupiter’s moon Europa. It is the six closest moon to Jupiter.   Jupiter is the 5th planet from the Sun and is the largest planet in the Solar System. Jupiter is classified as a gas giant with mass one-thousandth of that of the Sun but is two and a half times the mass of all the other planets in the Solar System combined.

Europa has an outer layer of water around  (62 mi) thick; some as frozen-ice upper crust, some as liquid ocean underneath the ice. The layer is likely a salty liquid water ocean.  Europa contains a metallic iron core. Europa has emerged as one of the top locations in the Solar System in terms of  potentially hosting extraterrestrial  life that could exist in its under-ice ocean.  Life in such an ocean could possibly be similar to  life on Earth in the deep ocean. The likely presence of liquid water on Europa has spurred calls to send a  manned mission to investigate.

An order was place with the E-vectors Space factory  to build the spacecraft that will taking the three  astronaut and three robots to the moon Europa.    The engine that will carry them is  neutronic that can navigate in the deep ocean ,the atmosphere,and in deep space.   All three are categorized as water elements with outer space being the thicker of the three.  The neutronic engine creates fusion energy capable of speeds to reach Jupiter’s moon in 659 days or approximately  1 year and 9 months,when Jupiter and Earth are aligned.

The astronauts will not land on the surface of Europa but instead orbit the moon and communicate with our Deep Space Station. The robots will be used to explore the surface and the under ice ocean.    Information transmitted by the robots will be sent to the orbiting spacecraft to determine ,confirm the habitability ,and the characteristic of the water within and below Europa’s icy shell.

Artist’s concept of the crybot a thermal drill, seen upper left) and its deployed ‘hydrobot’ submersible

 

 

Water vapor plums have been detected on Europa due to the under ice oceans tides and gravitational stress from the planet Jupiter.  The plums are considered simular to volcanoes pewing magma but instead water.  Life on the surface could be possible closest to these plums due to the heat which is created.

Wow ! Some people want free advertisement on my website but don’t have the decency to check my advertisers, so I can make money Too.   So  UnAmerican    !!! 1