NASA Is Seriously Revving Up The Search For Alien Life

  • NASA Is Seriously Revving Up The Search For Alien Life

A few weeks ago, NASA chief scientist Ellen Stofan made news by saying, “I think we’re going to have strong indications of life beyond Earth within a decade, and I think we’re going to have definitive evidence within 20 to 30 years.” It was a bold statement, but NASA is now backing those words with action.

The field of astrobiology just got a significant boost thanks an ambitious new alien-hunting initiative launched by NASA. Called NExSS, the initiative will bring together an impressive array of experts and teams across a variety of scientific fields.

The goal of NExSS — short for Nexus for Exoplanet System Science — is to improve our understanding of extrasolar planets, and how their stars and neighboring planets interact to support life. To achieve this, NASA has put together a multidisciplinary team consisting of earth scientists, planetary scientists, heliophysicists, and astrophysicists.

“This interdisciplinary endeavor connects top research teams and provides a synthesized approach in the search for planets with the greatest potential for signs of life,” noted Jim Green, NASA’s Director of Planetary science, in a statement. “The hunt for exoplanets is not only a priority for astronomers, it’s of keen interest to planetary and climate scientists as well.”

Since 1995, over 1,000 exoplanets have been discovered. Thousands of additional candidates are still waiting to be confirmed. The time has come, says NASA, for scientists to acquire a better understanding of these distant objects to learn how they might be capable of giving rise to life and how we might be able to detect their bio signatures from Earth using current and next-gen telescopic technologies.

By applying a “system science” approach, the teams will work to understand how biology interacts with the atmosphere, geology, oceans, and interior of a planet, and how host stars contribute to habitability. At the same time, the scientists will classify the diversity of worlds (including a “periodic table of planets”), assess potential habitability of exoplanets, and develop new alien-hunting tools and technologies.

Among the teams assembled, some notable contributions will come from: the University of Arizona, Tucson’s “Earth in Other Solar Systems” team; Hampton University, Virginia’s “Living, Breathing Planet” team; NASA’s own Solar System astrobiological initiative; and the Pennsylvania State University project studying the atmospheres of giant planets orbiting hot Jupiters.

This is very exciting stuff, especially in consideration of future projects such as the James Webb Space Telescope (JWST), the Transiting Exoplanet Survey Satellite (TESS), and the Wide-field Infrared Survey Telescope (WFIRST). Over the course of the next 10-to-20 years, astrobiologists may very well detect signs of alien life. But that alien life is bound to be microbial in nature. The search for extraterrestrial intelligence is another challenge altogether.

Image: NASA.


 

Enter The Space Plane

E-Vectors Space Company to build two type of space planes.  A suborbital, the Fire Fly 200  and a manned  unmanned plane that will be capable of traveling through deep space to Jupiter and beyond the Fire Fly  400.  Both space planes will take off vertically before accelerating to speed of 22,000 miles per hour using fusion /neutronic engines.   A spaceplane is an aerospace vehicle that operates as an aircraft in Earth’s atmosphere, as well as a spacecraft when it is in space.  It combines features of an aircraft and a spacecraft, which can be thought of as an aircraft that can endure and maneuver in the vacuum of space or likewise a spacecraft that can fly like an airplane.

As in a previous blog most of the construction would take place in space at the space factory using the 3 D printer with some of the components built  here on Earth.

 

 

 

 

 

 

Nasa’s Deep Space Exploration Vehicle

NASA’s Space Launch System, or SLS, is
an advanced launch vehicle for a new era of
exploration beyond Earth’s orbit into deep space.
SLS, the world’s most powerful rocket, will launch
astronauts in the agency’s Orion spacecraft on
missions to an asteroid and eventually to Mars,
while opening new possibilities for other payloads
including robotic scientific missions to places like
Mars, Saturn and Jupiter.
Offering the highest-ever payload mass and volume
capability and energy to speed missions through
space, SLS will be the most powerful rocket in
history and is designed to be flexible and evolvable,
to meet a variety of crew and cargo mission needs

Orion Exploration Flight Test 1

 

NASA’S “NEW SPACECRAFT” FOR DEEP SPACE TRAVEL

 

In early December, NASA will take an important step into the future with the first flight test of the Orion spacecraft — the first vehicle in history capable of taking humans to multiple destinations in deep space. And while this launch is an un-crewed test, it will be the first peek at how NASA has revamped itself since the end of the Space Shuttle Program in 2011.

While the space shuttle achieved many ground-breaking accomplishments, it was limited to flights in low-Earth orbit (approx. 250 miles high). Its major goal, over the program’s last 10 years, was to launch and assemble the International Space Station, where the risks and challenges of long duration human space flight can be addressed and retired. With the ISS construction complete, NASA is in the process of handing over supply and crew transportation missions to private industry, so NASA can focus on what’s next – deep space exploration. And this first flight test of Orion is a significant milestone on the path to get there.

The flight itself will be challenging. Orion will fly 3,600 miles above Earth on a 4.5-hour mission to test many of the systems necessary for future human missions into deep space. After two orbits, Orion will re-enter Earth’s atmosphere at almost 20,000 miles per hour, reaching temperatures near 4,000 degrees Fahrenheit, before its parachute system deploys to slow the spacecraft for a splashdown in the Pacific Ocean.

While this launch is an important step to taking humans farther than we’ve ever gone before, it is important to note that it also reflects the fact that, after 30 years of space shuttle missions dominating its human spaceflight activities, NASA has reevaluated everything – from its rockets and launch facilities to how it designs and manages its programs. With the Orion spacecraft, NASA wanted to develop a vehicle that could fly for decades with the flexibility to visit different destinations and safely return astronauts to Earth as the nation’s exploration goals evolve. As capable as the Apollo capsule was, the longest round trip mission to the Moon took 12 days. Orion is designed as a long-duration spacecraft that will allow us to undertake human missions to Mars – a two year round trip. In addition, NASA built enough capability into Orion so there is no need for redesign, or to start up a new program, as new destinations are identified.

Innovation and flexibility are also evident with the ground infrastructure. At Kennedy Space Center (KSC) in Florida, NASA has eliminated the ground systems and launch pads that were built specifically for the space shuttle. They have developed a “clean pad” approach that can be used by a variety of launch vehicles. The new streamlined infrastructure will be much more cost-efficient, reducing the time for on-the-pad processing from 30 days, the space shuttle’s timeline, to just five to six days.

The key to launching Orion on deep space exploration missions is NASA’s new “super rocket.” Known as the Space Launch System (SLS), it will be the most powerful rocket in history. The enormous power of the SLS will provide the capability to go farther into our solar system than humans have ever gone before. It will enable launches to other planets in less than half the time of any existing rocket. And, like Orion and the new ground systems at KSC, it is designed to be flexible and evolvable to meet a wide variety of crew and cargo mission requirements.

The SLS is an absolute game-changer for ambitious robotic missions to the outer planets and large unprecedented astronomical observatories. Those missions will build on the discoveries of Curiosity on Mars, the Hubble Space Telescope and its successor, the James Webb Space Telescope, and multiple robotic missions in the years ahead.

Through the development of the SLS and Orion, NASA has learned many lessons on how to streamline the design to make it more affordable than past systems. For the early missions, SLS will use heritage space shuttle hardware for the liquid engines and solid rocket boosters. Also, instead of initially building the “full-up” SLS, NASA has designed it to evolve by planning upgraded upper stages and boosters that future missions will require in the 2020’s and 2030’s. These innovations have allowed SLS to stay on a relatively flat budget throughout its design phase.

Even the way NASA manages its programs has been revamped. The Agency’s management structure for systems engineering and integration has been streamlined to increase communication and enhance decision-making. Strong communication has led to increased precision, and the potential cost avoidance is close to $100 million per year. Evidence of these savings can be seen in the successful completions of Preliminary Design Reviews for Orion, SLS and KSC ground systems.

As a nation, the U.S. has not sent crews beyond low Earth orbit since the last Apollo crew walked on the Moon in 1972. With Orion and SLS, America will have the fundamental capabilities to support missions taking the next steps into deep space, and with innovation and flexibility at the foundation of these programs, NASA is building a “Highway” for deep space exploration that will be sustainable for decades to come.

Morpheus Demonstrates Key Capabilities

On May 28, NASA demonstrated that it can land an unmanned spacecraft on a rugged planetary surface in the pitch dark.

The free-flight test was the first of its kind for NASA’s Autonomous Landing Hazard Avoidance Technology, or ALHAT.

First night free-flight test of Morpheus lander with ALHAT technology
The first night free-flight test of NASA’s Morpheus prototype lander was conducted at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida.
Image Credit:
NASA

Morpheus  an unmanned spacecraft capable of carrying 1,100 pounds (499 kg) of cargo  powered its way up to more than 800 feet (244 m) into the dark Florida sky at NASA’s Kennedy Space Center using solely ALHAT’s Hazard Detection System for guidance.

The Hazard Detection System, assisted by three light detection and ranging (lidar) sensors, located obstacles  such as rocks and craters  and safely landed on the lunar-like hazard field a quarter mile away from the NASA Center. Lidar which stands for Light Detection and Ranging is a remote sensing method that uses light in the form of pulsed laser to measure ranges (variable distances) to the Earth.

“The team has been striving for almost eight years to reach this point of testing the ALHAT system in a relevant space-flight-like environment on Morpheus,” said Eric Roback, ALHAT flash lidar lead engineer at NASA’s Langley Research Center in Hampton, Virginia.

During testing, the Hazard Detection System pointed its sensor at the hazard field and made a mosaic of flash lidar three dimensional range images encompassing the hazard field.

 

first night free-flight test of NASA’ Morpheus prototype lander
Morpheus powered its way up to more than 800 feet into the Florida night sky at NASA’s Kennedy Space Center using solely ALHAT’s Hazard Detection System for guidance.
Image Credit:
NASA

“The flash lidar performed very well, and we could clearly identify rocks as small as one foot (0.3 m) in size from the largest range that Morpheus could give us, which was approximately a quarter mile,” (402 m) Roback said. “With this sensor we could even find the safest landing site in a pitch black crater.”

The Hazard Detection System then had to stitch the flash lidar images together to a three dimensional map of the landing site, analyze the map and select the best landing sites. Shortly after, the Doppler lidar measured the vehicle’s altitude and velocity to land precisely on the surface. The high-altitude laser altimeter provided data enabling the vehicle to land at the chosen landing site.

“Once this technology goes into service, the days of having to land 20 or 30 miles (32 to 48 km) from where you really want to land for fear of the hazardous craters and rocks will be over,” Roback said. “Then we can land near the truly interesting science and near the critical resources that will be needed for eventual colonization, and we can do it over and over again safely.”

The ALHAT Hazard Detection System brings together expertise from three different NASA Centers. Langley created the lidar sensors. NASA’s Jet Propulsion Laboratory in Pasadena, California, developed the pointing and real-time image processing technology, and NASA’s Johnson Space Center in Houston developed the guidance, navigation and control technology.

The Advanced Exploration Systems Division of NASA’s Human Exploration and Operations Mission Directorate manages ALHAT and Morpheus. Advanced Exploration Systems pioneers new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit.   I would appreciate your support by visiting the advertisers below .

Wow ! Some people want free advertisement on my website but don’t have the decency to check my advertisers, so I can make money Too.   So  UnAmerican    !!! 1     

 

 

 

NASA is one step closer to launching its newest spacecraft designed for humans.

NASA's Orion spacecraft, preparing for it's first flight, departs the Neil Armstrong Operations and Checkout Building on its way to the Payload Hazardous Servicing Facility at the Kennedy Space Center, Thursday, Sept. 11, 2014, in Cape Canaveral, Fla. Orion is scheduled for a test flight in early December. (AP Photo/John Raoux)

Workers at Kennedy Space Center gathered to watch as the Orion capsule emerged from its assembly hangar months from its first test flight. The capsule slowly made its way to its fueling depot atop a 36-wheel platform. The capsule and its attached service module and adapter ring stretched 40 feet high. Space center employees lined up along the rope barricade to snap pictures of Orion, NASA’s lofty follow-on to the now-retired space shuttle program.

During its test flight, the unmanned capsule will shoot more than 3,600 miles into space and take two big laps around Earth before re-entering the atmosphere at 20,000 mph and parachuting into the Pacific off the San Diego coast.

NASA's Orion spacecraft, preparing for it's …

The second Orion flight won’t occur until around 2018 when another unmanned capsule soars atop NASA’s new mega-rocket, still under development, called SLS for Space Launch System. NASA intends to put astronauts aboard Orion in 2021 for deep space exploration; each capsule can accommodate up to four astronauts. The plan is to use Orion for getting humans to asteroids and Mars .There will be no space station ferry trips for Orion.

While Orion may resemble an oversize Apollo capsule on the outside, everything inside and out is modern and top-of-the-line. For Orion’s dry run, the  capsule will have hunks of aluminum in place of seats for ballast, and simulators instead of actual cockpit displays. A Delta IV rocket will do the heavy lifting.

NASA's Orion spacecraft, preparing for it's …

Orion has its roots in the post-Columbia shuttle era; it originated a decade ago as a crew exploration vehicle to get astronauts beyond low Earth orbit and managed to survive the cancellation of the Constellation moon project. The Constellation project was the completion of the International Space Station and a return to the moon no later than 2020 with the planet  Mars as the ultimate goal.

Wow ! Some people want free advertisement on my website but don’t have the decency to check my advertisers, so I can make money Too.   So  UnAmerican    !!! 1     

 

 

 

 

 

 

 

Nasa’s 3D Printer In Zero Gravity

 

The 3D printer that will be launched to the space station in fall 2014 is tested at NASA’s Marshall Space Flight Center.
Image Credit:
NASA

America has always been a nation of tinkerers, inventors, and entrepreneurs. In recent years, a growing number of Americans have gained access to technologies such as 3D printers, laser cutters, easy-to-use design software, and desktop machinery. These tools are enabling more Americans to design and Make almost anything, and the applications to space exploration will help our astronauts to be less reliant on materials from Earth as they explore farther out into the solar system.

 

NASA’s 3D Printing in Zero-G ISS Technology Demonstration will demonstrate the capability of utilizing a Made In Space 3D printer for in-space additive manufacturing technology. This is the first step toward realizing an additive manufacturing, print-on-demand “machine shop” for long-duration missions and sustaining human exploration of other planets, where there is extremely limited ability and availability of Earth-based logistics support. If an astronaut tool breaks, future space pioneers won’t be able to go to the local hardware store to purchase a replacement, but with 3D printing they will be able to create their own replacement or create tools we’ve never seen before. For NASA as well as the Maker community, 3D printing provides end-to-end product development.

 

Image showing a 3D printer printing
The 3D printer prints a common part that is used aboard the space station.
Image Credit:
NASA

NASA, in conjunction with the American Society of Mechanical Engineers Foundation, has issued Future Engineers” printing challenges for the first 3D printer aboard the International Space Station. Middle and high school students will design items for 3D printing on ISS, and the winning student will watch from NASA’s Payload Operations Center with the mission control team as the item is printed in space.  NASA and the ASME Foundation will also promote these projects and others in Maker Community Challenge Showcases, in which student participants would have the opportunity to have their 3D designs printed at local Maker community locations and student participants would showcase their 3D designs in on online open hardware design repository.

Wow ! Some people want free advertisement on my website but don’t have the decency to check my advertisers, so I can make money Too.   So  UnAmerican    !!! 1     


Made In Space 3-D Printer

3D printer to fly to space in august, sooner than planned

A 3-D printer intended for the International Space Station has passed its NASA certifications with flying colors—earning the device a trip to space sooner than expected. The next Dragon spacecraft, scheduled to launch in August, will carry the Made In Space printer on board.

“Passing the final tests and shipping the hardware are significant milestones, but they ultimately lead to an even more meaningful one – the capability for anyone on Earth to have the option of printing objects on the ISS. This is unprecedented access to space,” stated Made In Space CEO Aaron Kemmer.

This 3-D printer will be the first to be used in orbit. Officials have already printed out several items on the ground to serve as a kind of “ground truth” to see how well the device works when it is installed on the space station. It will be put into a “science glovebox” on the International Space Station and print out 21 demonstration parts, such as tools.

“The next phase will serve to demonstrate utilization of meaningful parts such as crew tools, payload ancillary hardware, and potential commercial applications such as cubesat components,” Made In Space added in a statement.

Once fully functional, the 3-D printer is supposed to reduce the need to ship parts from Earth when they break. This will save a lot of time, not to mention launch costs, the company said. It could also allow astronauts to manufacture new tools on the fly when “unforeseen situations” arise in orbit.

Another NASA 3-D printer contract, given to the Systems & Materials Research Cooperation, could lead to a device to manufacture food for crew members.

Wow ! Some people want free advertisement on my website but don’t have the decency to check my advertisers, so I can make money Too.   So  UnAmerican    !!! 1     

 

 

 

NASA Says Puzzling New Space Drive Can GenerateThrust Without Propellant

By 

August 2, 2014                                                                                                                                                                                                                                                                                  

According to a puzzling report, a new thruster design appears to be able to accelerate a c...

According to a puzzling report, a new thruster design appears to be able to accelerate a craft without the use of propellant (Image: Cannae)

A NASA study has recently concluded that the “Cannae Drive,” a disruptive new method of space propulsion, can produce small amounts of thrust without the use of propellant, in apparent discordance with Newton’s third law. According to its inventor, the device can harness microwave radiation inside a resonator, turning electricity into a net thrust. If further verified and perfected, the advance could revolutionize the space industry, dramatically cutting costs for both missions in deep space and satellites in Earth orbit.

 

The basic principle behind space propulsion is very simple: for every action, there is an equal and opposite reaction. Use a rocket engine to throw mass one way, get propelled the other way. And according to the law of conservation of momentum, the more mass you throw behind you and the faster you throw it, the stronger your forward thrust will be.

One consequence for space travel is that, to counter Earth’s gravity and reach orbital velocity, rockets need to carry a very large amount of propellant: For instance, in the now-retired Space Shuttle, the mass of the fuel was almost twenty times greater than the payload itself. In satellites the impact is smaller, but still very significant: for geostationary satellites, fuel can make up as much as half the launch weight, and that makes them more expensive to launch and operate.

But now, a NASA study has concluded that a new type of spacecraft propulsion is able to generate thrust without propellant. This appears to violate the law of conservation of momentum: in other words, if no mass (fuel or otherwise) is being ejected from the system, where is the thrust coming from? Where is the equal and opposite reaction?

The thruster appears to work by resonating microwave radiation to produce a net force (Ima...

According to its inventor, US scientist Guido Fetta, the thruster works as a resonating cavity for microwave radiation. The cavity redirects the radiation pressure to create an unbalanced force, and that force produces a net thrust.

In its study NASA didn’t attempt to explain the phenomenon, and instead contented itself with verifying that the system did indeed generate a small amount of thrust, between 30 and 50 micro-Newtons. This is a tiny amount, only enough to levitate a mass of three to five milligrams (a few eyelashes) here on Earth; but, astonishingly, it is a net thrust nonetheless.

“Test results indicate that the RF resonant cavity thruster design, which is unique as an electric propulsion device, is producing a force that is not attributable to any classical electromagnetic phenomenon and therefore is potentially demonstrating an interaction with the quantum vacuum virtual plasma,” the study concludes.

The system has many striking similarities with the EmDrive, designed by British aerospace engineer Roger Shawyer, although the explanation that Shawyer provides for the working mechanism is quite different from Fetta’s or NASA’s.

According to one peer-reviewed paper, the EmDrive thruster was able to produce 720 mN of t...

According to one peer-reviewed paper, the EmDrive thruster was able to produce 720 mN of thrust from an electricity input of 2.5 kW (Photo: EmDrive)

“At first sight the idea of propulsion without propellant seems impossible,” says Shawyer. “However, the technology is firmly anchored in the basic laws of physics and following an extensive review process, no transgressions of these laws have been identified.”

According to Shawyer, the thruster works because of relativistic effects: the microwaves are moving at a significant fraction of the speed of light at both ends of the resonator, and so, he claims, the resonator and the microwaves have two separate frames of reference, with the two forming an open system that ultimately doesn’t violate the laws of physics, conservation of momentum included.

The interesting thing about EmDrive is that, back in 2009, a Chinese peer-reviewed journal tested Shawyer’s thruster design, registering 720 mN of thrust at an input power of 2.5 kW. That’s enough to make a tennis ball hover, and then some; in fact, if the results are confirmed, such levels of thrust would already be practical for satellitar applications.

Salient characteristics of the EmDrive compared to a more conventional ion propulsion syst...

Salient characteristics of the EmDrive compared to a more conventional ion propulsion system (Image: EmDrive)

The system could generate electricity from solar panels, and because it is much lighter than current thrusters, it could more than halve the weight launch of satellites, leading to very significant reductions in launch costs. A practical microwave thruster could also meaningfully extend the lifetime of satellites and pave the way for deep space robotic missions.

Even beyond that, Shawyer claims that the second generation of his fuel-less thrusters, based on superconductor technology, will be capable of producing an impressive specific thrust of 30 kN per kW of input energy. “Thus for 1 kilowatt (typical of the power in a microwave oven) a static thrust of 3 tonnes (3.3 tons) can be obtained, which is enough to support a large car. This is clearly adequate for terrestrial transport applications.”

But before we start talking Sun-powered flying cars and weekend trips to Pluto, the scientific community will undoubtedly need to dissect the experiment with great care and independently verify whether the tiny net thrust reported by NASA could after all be attributed to some external cause that the researchers didn’t account for.

Sources: CannaeEmDrive via Wired

Voyager 1 Nears The Edge Of The Solar System

After traveling for 37 years, Voyager I is recording pulses from the sun that confirm it has entered a different region near the edge of the solar system called interstellar space.

pia174620-2.jpg

Voyager I is the “farthest human-made probe from Earth, and the first to enter the vast sea between stars,” according to NASA. NASA/JPL-Caltech

NASA’s Voyager I spacecraft has been steadily journeying away from the sun to the outer reaches of the solar system since its 1977 launch. As it travels farther out and enters a different region of the solar system, it’s occasionally affected by coronal mass ejections — shock waves caused from massive violent eruptions from our sun.

There have been three of these space “tsunamis” since 2012, and the third one — described by NASA on Monday — has helped the space agency confirm something it posited in late 2013: that Voyager is the first Earth craft to travel into interstellar space.

Interstellar space is the area just beyond the reach of what’s known as our heliosphere: an area where the solar wind pushes back the dense plasma of space in a sort of protective bubble. This plasma was ejected into the universe by the death of stars millions of years ago.

The plasma outside the heliosphere is about 40 times denser than the plasma that lies inside it. By using its 37-year-old cosmic ray and plasma wave instruments, Voyager has sent back signals to Earth that prove it has popped through our sun’s protective bubble and is now moving through the thicker plasma. Scientists can tell this is the case because the thicker plasma in interstellar space oscillates at a faster rate than less dense plasma and produces a different frequency when hit by the sun’s shock waves.

“The tsunami wave rings the plasma like a bell,” Ed Stone of the California Institute of Technology , the mission’s project scientist since 1972, said in NASA’s statement. “While the plasma wave instrument lets us measure the frequency of this ringing, the cosmic ray instrument reveals what struck the bell — the shock wave from the sun.”

“Normally, interstellar space is like a quiet lake,” Stone added. “But when our sun has a burst, it sends a shock wave outward that reaches Voyager about a year later. The wave causes the plasma surrounding the spacecraft to sing.”