Habitable planet found in solar system next door

An artist's impression of the planet Proxima b, orbiting the red dwarf star Proxima Centauri

View photos

 

An artist’s impression of the planet Proxima b, orbiting the red dwarf star Proxima Centauri (AFP Photo/M. Kornmesser)

Paris (AFP) – Scientists Wednesday announced the discovery of an Earth-sized planet orbiting the star nearest our Sun, opening up the glittering prospect of a habitable world that may one day be explored by robots.

Named Proxima b, the planet is in a “temperate” zone compatible with the presence of liquid water — a key ingredient for life.

The findings, based on data collected over 16 years, were reported in the peer-reviewed journal Nature.

“We have finally succeeded in showing that a small-mass planet, most likely rocky, is orbiting the star closest to our solar system,” said co-author Julien Morin, an astrophysicist at the University of Montpellier in southern France.

“Proxima b would probably be the first exoplanet visited by a probe made by humans,” he told AFP.

An exoplanet is any planet outside our Solar System.

Lead author Guillem Anglada-Escude, an astronomer at Queen Mary University London, described the find as the “experience of a lifetime”.

Working with European Southern Observatory telescopes in the north Chilean desert, his team used the so-called Doppler method to detect Proxima b and describe its properties.

The professional star-gazers spent 60 consecutive days earlier this year looking for signs of gravitational pull on its host star, Proxima Centauri.

Regular shifts in the star’s light spectrum — repeating every 11.2 days — gave a tantalising clue.

They revealed that the star alternately moved towards and away from our Solar System at the pace of a leisurely stroll, about five kilometres (three miles) per hour.

– Goldilocks zone –

After cross-checking an inconclusive 2000-2014 dataset and eliminating other possible causes, the researchers determined that the tug of an orbiting planet was responsible for this tiny to-and-fro.

“Statistically, there is no doubt,” Anglada-Escude told journalists in a briefing.

“We have found a planet around Proxima Centauri.”

Proxima b is a mere four light years from the Solar System, meaning that it is essentially in our back yard on the scale of our galaxy, the Milky Way.

It has a mass around 1.3 times that of Earth, and orbits about seven million kilometres (4.35 million miles) from its star.

A planet so near to our Sun — 21 times closer than Earth — would be an unlivable white-hot ball of fire.

But Proxima Centauri is a so-called red dwarf, meaning a star that burns at a lower temperature.

As a result, the newly discovered planet is in a “Goldilocks” sweet spot: neither so hot that water evaporates, nor so cold that it freezes solid.

But liquid water is not the only essential ingredient for the emergence of life.

An atmosphere is also required, and on that score the researchers are still in the dark.

It all depends, they say, on how Proxima b evolved as a planet.

“You can come up with formation scenarios that end up with and Earth-like atmosphere, a Venus-like atmosphere” — 96 percent carbon dioxide — “or no atmosphere at all,” said co-author Ansgar Reiners, an expert on “cold” stars at the University of Goettingen’s Institute of Astrophysics in Germany.

Computer models suggest the planet’s temperature, with an atmosphere, could be “in the range of minus 30 Celsius (-22 Fahrenheit) on the dark side, and 30C (80F) on the light side,” Reiners told journalists.

Like the Moon in relation to Earth, Proxima b is “tidally locked,” with one face always exposed to its star and the other perpetually in shadow.

Emerging life forms would also have to cope with ultraviolet and X-rays bombarding Proxima b 100 times more intensely than on Earth.

– Search for life –

An atmosphere would help deflect these rays, as would a strong magnetic field.

But even high doses of radiation do not preclude life, especially if we think outside the box, scientists say.

“We have to be very open-minded as to what we call ‘life’,” Jean Schneider, an expert on exoplanets at the Observatoire de Paris, told AFP.

Some 3,500 exoplanets have been discovered since the first confirmed sighting in 1995.

Most of these distant worlds — like our own Jupiter and Neptune — are composed of gas, an inhospitable environment for life.

Even the 10 percent that do have rocky surfaces are mostly too cold or too hot to host water in liquid form.

And — until today — the handful that are in a temperate zone are effectively beyond reach.

Last year, for example, NASA unveiled Kepler 452b, a planet about 60 percent larger than Earth that could have active volcanoes, oceans, sunshine like ours, and a year lasting 385 days.

But at a distance of 1,400 light-years, humankind would have little hope of reaching this Earth-twin any time soon.

By comparison, Proxima b is a stone’s throw away, though still too far away for humans to visit with present-generation chemical rockets.

“This is a dream for astronomers if we think about follow up observations,” said Reiners.

Marlowe Hood

Wild new theory says Earth may actually be two different planets

Chris Smith,BGR News

A new theory says Earth is made of two planets, rather than just one. Apparently, our planet is the result of a collision that helped map the course of both Earth as we know it and the moon.

According to new research from the University of California, Earth and a hypothesized early planet called Theia collided, and the two planets fused together 4.5 billion years ago. That impact also formed our moon, Science Alert explains.

The initial working theory was that the Earth and Theia only side-swiped each other, sending the moon into orbit and then flying away into space. But this new research says that Theia never left Earth and instead, it helped shape up our planet.

Scientists studied oxygen isotopes from moon rocks from the Apollo missions and volcanic rocks from Earth’s mantle. Since each planet has a particular oxygen signature when it comes to oxygen contents, they would be able to see differences between lunar soil and Earth rocks.

If Theia simply swiped Earth, then the moon would be made mostly of Theia, and the Earth and moon rocks would have different oxygen isotopes. However, the researchers found they have the same isotopes.

“We don’t see any difference between Earth’s and the Moon’s oxygen isotopes; they’re indistinguishable,” researcher Edward Young said.

“Theia was thoroughly mixed into both the Earth and the moon, and evenly dispersed between them. This explains why we don’t see a different signature of Theia in the Moon versus Earth.”

The researcher also explained there’s evidence that Theia was a growing planet, still evolving at the time of the impact. The planet was similar in size to either Earth or Mars.

If confirmed, the research will help us better understand the origins and history of our planet. You know, as long as you believe Earth is a spheroid planet, and not a flat surface floating in space.

How Long Does It Take to Get to Mars?

Mars at its closest point to Earth in 2003

 

Mars is the fourth planet from the sun, and the second closest to Earth (Venus is the closest). But the distance between the two planets is constantly changing as they travel around the sun.

In theory, the closest that Earth and Mars would approach each other would be when Mars is at its closest point to the sun (perihelion) and Earth is at its farthest (aphelion). This would put the planets only 33.9 million miles (54.6 million kilometers) apart. However, this has never happened in recorded history. The closest approach of the two planets occurred in 2003, when they were only 34.8 million miles (56 million km) apart.

The two planets are farthest apart when they are both at their farthest from the sun, on opposite sides of the star. At this point, they can be 250 million miles (401 million km) apart.

The average distance between the two planets is 140 million miles (225 million km).

The speed of light

Light travels at approximately 186,282 miles per second (299,792 km per second). Therefore, a light shining from the surface of Mars would take the following amount of time to reach Earth (or vice versa):

  • Closest approach: 182 seconds, or just over 3 minutes
  • Farthest approach: 1,342 seconds, or just over 22 minutes
  • On average: 751 seconds, or just over 12.5 minutes

Fastest spacecraft so far

The fastest spacecraft launched from Earth was NASA’s New Horizons mission, which is en route to Pluto. In January 2006, the probe left Earth at 36,000 mph (58,000 kph). The time it would take such a probe to get to Mars would be:

  • Closest approach: 942 hours (39 days)
  • Farthest approach: 6,944 hours (289 days)
  • On average: 3,888 hours (162 days

But then things get complicated …

Of course, the problem with the previous calculations is that they measure distance between the two planets as a straight line. Traveling through the farthest passing of Earth and Mars would involve a trip directly through the sun, while spacecraft must of necessity move in orbit around the solar system’s star.

Although this isn’t a problem for the closest approach, when the planets are on the same side of the sun, another problem exists. The numbers also assume that the two planets remain at a constant distance; that is, when a probe is launched from Earth while the two planets are at the closest approach, Mars would remain the same distance away over the course of the 39 days it took the probe to travel. [Countdown: The Boldest Mars Missions in History]

In reality, however, the planets are continuously moving in their orbits around the sun. Engineers must calculate the ideal orbits for sending a spacecraft from Earth to Mars. Their numbers factor in not only distance but fuel efficiency. Like throwing a dart at a moving target, they must calculate where the planet will be when the spacecraft arrives, not where it is when it leaves Earth. Spaceships must also decelerate to enter orbit around a new planet to avoid overshooting it.

How long it takes to reach Mars depends on where in their orbits the two planets lie when a mission is launched. It also depends on the technological developments of propulsion systems.

Here is a list of how long it took several historical missions to reach the red planet. Their launch dates are included for perspective.

  • Mariner 4, the first spacecraft to go to Mars (1964 flyby): 228 days
  • Mariner 6 (1969 flyby): 155 days
  • Mariner 7 (1969 flyby): 128 days
  • Mariner 9, the first spacecraft to orbit Mars (1971): 168 days
  • Viking 1, the first U.S. craft to land on Mars (1975): 304 days
  • Viking 2 Orbiter/Lander (1975): 333 days
  • Mars Global Surveyor (1996): 308 days
  • Mars Pathfinder (1996): 212 days
  • Mars Odyssey (2001):  200 days
  • Mars Express Orbiter (2003): 201 days
  • Mars Reconnaissance Orbiter (2005): 210 days
  • Mars Science Laboratory (2011): 254 days

Jupiter’s Watery Moon Europa

NASA is plotting a daring robotic mission to Jupiter’s watery moon Europa, a place where astronomers speculate there might be some form of life.FILE - This Feb. 13, 1979 photo released by NASA's …

The space agency set aside $15 million in its 2015 budget proposal to start planning some kind of mission to Europa. No details have been decided yet, but NASA chief financial officer Elizabeth Robinson said Tuesday that it would be launched in the mid-2020s.

Robinson said the high radiation environment around Jupiter and distance from Earth would be a challenge. When NASA sent Galileo to Jupiter in 1989, it took the spacecraft six years to get to the fifth planet from the sun.

Last year, scientists discovered liquid plumes of water shooting up through Europa’s ice. Flying through those watery jets could make Europa cheaper to explore than just circling it or landing on the ice, said NASA Europa scientist Robert Pappalardo .Past NASA probes have flown by Europa, especially Galileo, but none have concentrated on the moon, one of dozens orbiting Jupiter. Astronomers have long lobbied for a mission to Europa, but proposals would have cost billions of dollars.

NASA will look at many competing ideas for a Europa mission, so the agency doesn’t know how big or how much it will cost, Robinson said. She said a major mission goal would be searching for life in the strange liquid water under the ice-covered surface.

Harvard astronomer Avi Loeb said going to Europa would be more exciting than exploring dry Mars: “There might be fish under the ice.”

___

 

The First Space Factory (E-Vectors INC.)

space craft power by positron reactor After gathering the materials from the moon landings , we have discovered the fuel need for space travel to other worlds . The fuel is a product from element 115 also known as Ununpentium. The product of element 115 is not  sent to earth but kept in space, on a space payload ship.

Using a Space Station type ship, large enough to house the people,the wares, and materials ,we  begin to mass produce spaceships.  The materials used are a Kevlar solution which is light weight and stronger than steel, and a product from the martian soil that absorbs water which protects against high levels of radiation.  3 D Printers are used for the configuration of the crafts.  Some of the basic components will be made on Earth  .\

We will discover the solution to space travel.  The equations  Space x Unknown = TIME  and Time x Unknown = SPACE meaning Space equals Time.   Yes when we look up at the stars ,we are looking back in tjme .  So to traveling  through space we will be traveling through time.

8.8 Billion Earth Like Planets In The Habitable Temperature Zone

By   Seth Borenstein       Space is vast, but itEarthlike Planets may not be so lonely after all: A study finds the Milky Way is teeming with billions of planets that are about the size of Earth, orbit stars just like our sun, and exist in the Goldilocks zone — not too hot and not too cold for life.

Astronomers using NASA data have calculated for the first time that in our galaxy alone, there are at least 8.8 billion stars with Earth-size planets in the habitable temperature zone.

The study was published Monday in the journal Proceedings of the National Academy of Science.

For perspective, that’s more Earth-like planets than there are people on Earth.

As for what it says about the odds that there is life somewhere out there, it means “just in our Milky Way galaxy alone, that’s 8.8 billion throws of the biological dice,” said study co-author Geoff Marcy, a longtime planet hunter from the University of California at Berkeley.

The next step, scientists say, is to look for atmospheres on these planets with powerful space telescopes that have yet to be launched. That would yield further clues to whether any of these planets do, in fact, harbor life.

The findings also raise a blaring question, Marcy said: If we aren’t alone, why is “there a deafening silence in our Milky Way galaxy from advanced civilizations?”

In the Milky Way, about 1 in 5 stars that are like our sun in size, color and age have planets that are roughly Earth’s size and are in the habitable zone where life-crucial water can be liquid, according to intricate calculations based on four years of observations from NASA’s now-crippled Kepler telescope.

If people on Earth could only travel in deep space, “you’d probably see a lot of traffic jams,” Bill Borucki, NASA’s chief Kepler scientist, joked Monday.

The Kepler telescope peered at 42,000 stars, examining just a tiny slice of our galaxy to see how many planets like Earth are out there. Scientists then extrapolated that figure to the rest of the galaxy, which has hundreds of billions of stars.

For the first time, scientists calculated — not estimated — what percent of stars that are just like our sun have planets similar to Earth: 22 percent, with a margin of error of plus or minus 8 percentage points.

Kepler scientist Natalie Batalha said there is still more data to pore over before this can be considered a final figure.

There are about 200 billion stars in our galaxy, with 40 billion of them like our sun, Marcy said. One of his co-authors put the number of sun-like stars closer to 50 billion, meaning there would be at least 11 billion planets like ours.

Based on the 1-in-5 estimate, the closest Earth-size planet that is in the habitable temperature zone and circles a sun-like star is probably within 70 trillion miles of Earth, Marcy said.

And the 8.8 billion Earth-size planets figure is only a start. That’s because scientists were looking only at sun-like stars, which are not the most common stars.

An earlier study found that 15 percent of the more common red dwarf stars have Earth-size planets that are close-in enough to be in the not-too-hot, not-too-cold Goldilocks Zone.

Put those together and that’s probably 40 billion right-size, right-place planets, Marcy said.

And that’s just our galaxy. There are billions of other galaxies.

Scientists at a Kepler science conference Monday said they have found 833 new candidate planets with the space telescope, bringing the total of planets they’ve spotted to 3,538, but most aren’t candidates for life.

Kepler has identified only 10 planets that are about Earth’s size circling sun-like stars and are in the habitable zone, including one called Kepler 69-c.

Because there are probably hundreds of planets missed for every one found, the study did intricate extrapolations to come up with the 22 percent figure — a calculation that outside scientists say is fair.

“Everything they’ve done looks legitimate,” said MIT astronomer Sara Seager.

By   Seth Borenstein