‘Death Star Spaceship’ Over Japan?

Seerat Chabba,International Business Times

 A peculiar spherical cloud was spotted in the Japanese city of Fujisawa, just south of Tokyo, earlier this month, giving rise to comparisons with a Star Wars weaponized space station. Experts, however, have shot down any such possibility of extra terrestrial interaction.

Pictures of the phenomenon were posted on Twitter last week and went viral with thousands of retweets and comments. Social media user Poppy was one of the first to capture the large cloud.

“When I looked out of the car window I saw a round ball-shaped cloud. I gazed at the cloud for a while then I rushed to take the photo,” Poppy, whose Twitter handle is  @pmxpvrtmx, told local Japanese news outlet, Rocket News 24. “When I saw the cloud it was an even more spherical shape, so I regret not taking the photo more quickly.”

 

Many likened the formation to a Death Star-style UFO or a “dragon’s nest” and this is not the first time such a cloud has been spotted. A similar mysterious cloud was recently spotted in Tremeirchion, north Wales, according to the BBC, and last year a Twitter user posted another picture of such a spherical structure in Japan.

View image on Twitter

Experts, however, are steering clear of any such theories.

While some say that the sighting could have been be a small portion of a larger cloud that was separated by strong winds, referred to as cumulus fractus clouds, others say that the angle from which it was photographed could have been the reason behind the distinctly spherical shape as another picture of the same cloud showed a change in shape.

“While I can’t verify the origin of this image, or whether it was even of the same cloud, it appears that the cloud only appeared spherical from one direction,” atmospheric scientist Todd Lane from the University in Melbourne, Australia told ScienceAlert.

“That is, the photographer was lucky to be in the right place to capture an interesting image of what is likely an uninteresting cloud. It looks to me to be some form of cumulus fractus cloud.”

 

How to Make a Spaceship: A Band of Renegades, an Epic Race, and the Birth of Private Spaceflight #gsummit

nextbigfuture.com

The historic race that reawakened the promise of manned spaceflight

Alone in a Spartan black cockpit, test pilot Mike Melvill rocketed toward space. He had eighty seconds to exceed the speed of sound and begin the climb to a target no civilian pilot had ever reached. He might not make it back alive. If he did, he would make history as the world’s first commercial astronaut.

The spectacle defied reason, the result of a competition dreamed up by entrepreneur Peter Diamandis, whose vision for a new race to space required small teams to do what only the world’s largest governments had done before.

Peter Diamandis was the son of hardworking immigrants who wanted their science prodigy to make the family proud and become a doctor. But from the age of eight, when he watched Apollo 11 land on the Moon, his singular goal was to get to space. When he realized NASA was winding down manned space flight, Diamandis set out on one of the great entrepreneurial adventure stories of our time. If the government wouldn’t send him to space, he would create a private space flight industry himself.

In the 1990s, this idea was the stuff of science fiction. Undaunted, Diamandis found inspiration in an unlikely place: the golden age of aviation. He discovered that Charles Lindbergh made his transatlantic flight to win a $25,000 prize. The flight made Lindbergh the most famous man on earth and galvanized the airline industry. Why, Diamandis thought, couldn’t the same be done for space flight?

The story of the bullet-shaped SpaceShipOne, and the other teams in the hunt, is an extraordinary tale of making the impossible possible. It is driven by outsized characters—Burt Rutan, Richard Branson, John Carmack, Paul Allen—and obsessive pursuits. In the end, as Diamandis dreamed, the result wasn’t just a victory for one team; it was the foundation for a new industry and a new age.
Business and Vacation Property Rentals

Why Japan’s mission to Venus has been so full of drama

 

China aims to be first to land probe on moon’s far side

Image result for far side of the moon

BEIJING (AP) — China’s space program says it plans to attempt the first-ever landing of a lunar probe on the moon’s far side.

 

Zou Yongliao from the Chinese Academy of Sciences’ moon exploration department told state broadcaster CCTV on Wednesday that the Chang’e 4 mission is planned for sometime before 2020.

 

Zou said the objective of the mission would be to study geological conditions on the moon’s far side, also known as the dark side. Radio transmissions from Earth are unable to reach the far side, making it an excellent location to place a radio telescope for use by astronomers.

 

China’s next lunar mission is scheduled for 2017, when it will attempt to land an unmanned spaceship on the moon before returning to Earth with samples..

 

NASA’s Mission to Europa

Let's Talk About NASA's Mission to Europa

The search for life in the Solar System is about the hunt for water. Wherever we find liquid water on Earth, we find life. I’m talking everywhere. In the most briny, salty pools in Antarctica, in the hottest hot springs in Yellowstone, under glaciers, and kilometers deep underground.

So we go searching for liquid water in the Solar System.

You might be surprised to learn that Jupiter’s moon Europa has the most water in the entire Solar System. If you took all the water on Earth, collected it into a big sphere, it would measure almost 1,400 kilometers across.

Europa’s water would measure nearly 1,800 kilometers.All that water exists in a layer around Europa, encased in a layer of ice. How thick? We don’t know.

Is there life down there? We don’t know. You can say there might be, and it wouldn’t be untrue. However, if you say there isn’t, that’s way less interesting for clickbait purposes. Whenever we don’t know the answers to fundamental and intriguing questions like that, it’s time to send a mission.

Good news! An actual mission to Europa is in the works right now. In 2015, NASA approved the development of an orbiter mission to Europa. If all goes well, and nothing gets cancelled, a spacecraft will launch in the 2020s, carrying 9 instruments to Europa. Most will be familiar cameras, mass spectrometers, and the like, to study the surface of Europa to a high level of resolution. Over the course of 45 flybys, the spacecraft will get down as close as 25 kilometers and capture it with incredible resolution.

Perhaps the most exciting, and controversial instrument on board the new Europa Orbiter mission will be its ice-penetrating radar. Mission planners battled over installing a radar this sophisticated, as it will be an enormous drain on the orbiter’s power.

This for us is incredibly exciting. It will allow the spacecraft to map out the depth and thickness of Europa’s icy exterior. Is it thick or thin? Are there pockets of water trapped just below the surface, or is it tough shell that goes on for dozens of kilometers?

The worst case scenario is that the shell goes thicker than the radar can reach, and we won’t even know how far it goes.

Whatever happens, the Europa orbiter will be a boon to science, answer outstanding questions about the moon and the chances of finding life there.

We’re just getting started. What we really want to send is a lander. Because of the intense radiation from Jupiter, the Sun, and space itself, the surface of the ice on Europa would be sterilized. But dig down a few centimeters and you might find life that’s protected from the radiation.

A future Europa lander might be equipped with a heated drill attached to a tether. The lander would be have with a heat-generated radioisotope thermoelectric generator, like most of NASA’s big, outer Solar System spacecraft.

But in addition to using it for electricity, it’ll use the raw heat to help a tethered drill to grind through the ice a few meters and sample what’s down there.

Drilling more than a few meters is probably the stuff of science fiction. Russian scientists in Antarctica drilled for almost two decades to get through 4,000 meters of ice above Lake Vostok. Imagine trying to get through 100 kilometers of the stuff, on a distant world, with a robot.

But, since I’ve talked about moving the Sun, and terraforming the Moon, maybe I shouldn’t put any bounds on my imagination. Nuclear-powered Europa submarines will get us swimming with the singing Europan space whales in no time.

Europa is the best place to search the Solar System for life, and I’m excited to see what the upcoming Europa Orbiter mission turns up. And I’m even more excited about the possibility of any future lander missions.

Fraser Cain – Universe Today

https://stacksocial.com?aid=a-t05y2r3p

Spacecraft built from graphene could fly without any fuel

 

Graphene is a wonder material made of carbon atoms arranged in a honeycomb lattice. (Photo: Wiki Commons)

Even though it is only one atom thick, graphene is 200 times stronger than steel. It conducts heat and electricity with great efficiency, is nearly transparent, and might just be the most useful material ever discovered. The amazing properties of graphene, as well as the many inventions that have spawned from its discovery, are becoming too numerous to count. Now scientists have stumbled upon yet another incredible hallmark of this wonder material: It turns light into motion, reports New Scientist.
This latest graphene breakthrough came entirely by accident. Researchers discovered it while using a laser to cut a sponge made of crumpled sheets of graphene oxide. As the laser cut into the material, it mysteriously propelled forward. Although lasers have been shown to shove single molecules around, they shouldn’t be physically capable of moving a structure as large as the graphene sponge.
Baffled, researchers investigated further. The graphene material was put in a vacuum and again shot with a laser. Incredibly, the laser still pushed the sponge forward, and by as much as 40 centimeters. Researchers even got the graphene to move by focusing ordinary sunlight on it with a lens.
How is this possible? Researchers still aren’t sure, but there are two leading theories. One explanation is that the material is acting like a solar sail. Basically, photons can transfer momentum to an object and propel it forward, and in the vacuum of space this effect can accumulate and even generate enough thrust to move a spacecraft.
When researchers tested the solar sail theory, however, it worked too well. This led them to consider a second possibility, that the graphene is absorbing the laser’s energy, building up a charge of electrons. Eventually extra electrons are released, which act like a propellant, pushing the graphene material in the opposite direction.
Though this second theory is a bit vague and incomplete, scientists were able to detect a current flowing away from the graphene as it was exposed to a laser, suggesting that the theory is at least on the right track.
So what does this all mean? It means that researchers may have just accidentally discovered a propulsion system for a spacecraft that requires no fuel whatsoever. Essentially, a spacecraft built from graphene could explore the heavens powered by nothing more than sunlight.
“While the propulsion force is still smaller than conventional chemical rockets, it is already several orders larger than that from light pressure,” wrote researcher Yongsheng Chen and colleagues of the discovery.
More study is required before researchers can say for sure if the material can offer a viable alternative to fuel propulsion, but the results so far are exciting. Truly, there seems to be no end to the amazing qualities of graphene.

By: Bryan Nelson

 

 

Is NASA one step closer to warp drive?

101896maincd1998766321200x900.jpg

Engage.NASA

Potentially good news for those who want to zip around our solar system, and beyond, at speeds approaching that of light — and maybe even faster.

NASA, according to NASASpaceFlight.com, is quietly claiming to have successfully tested a revolutionary new means of space travel that could one day allow for such insane speed, and to have done it in a hard vacuum like that of outer space for the first time.

The technology is based on the electromagnetic drive, or EM drive.

The science behind the EM drive is, well, complicated to say the least, but the basic idea is to convert electrical energy into thrust without propellant (the fuel in rockets), which should be impossible because it violates the law of conservation of momentum. That law states that momentum can only be changed by one of the forces described by Newton’s laws of motion — that’s where propellant normally comes in with traditional rockets.

If you want to dive into the “hows” and “whys” of all this, they’re discussed at length — by amateur enthusiasts as well as Ph.Ds and one of the NASA engineers actually working on the EM drive — on this NASASpaceFlight.com forum.

Scientists from the US, UK and China have demonstrated the EM drive over the past 15 years or so, but it’s been controversial, since as mentioned above, the EM drive would seem to violate classical physics. NASA’s tests in conditions that mimic outer space, however, bring a new sense of possibility to electromagnetic propulsion.

 

If such a technology really does work, and can be implemented in future spacecraft, the implications include faster, cheaper and more efficient travel around our solar system and beyond, and could even be a stepping stone to faster-than-light travel. Yes Trekkers, I do mean a warp drive.

Imagine a vehicle carrying half a dozen passengers and luggage to the moon in about four hours, or a multi-generational trip at almost one-tenth the speed of light to reach Alpha Centauri in less than a century. The technology that makes this a reality could be in testing right now in Texas at the Johnson Space Center.

NASA did not immediately respond to a request for comment, but we reached out to Paul March, the engineer who has been working on the EM drive at JSC and sharing some of the results on the forum mentioned above. He told us:

“My work at Eagleworks (the lab at JSC where the EM drive is being tested) is just a continuation of my work tackling the fundamental problem that has been hindering manned spaceflight from the termination of the Apollo moon program. That being the availability of a robust and cost-effective power and propulsion technology that can break us loose from the shackles of the rocket equation.”

The technology will still require more tests to verify that it’s the real deal (none of this has gone through anything like a rigorous peer review, except for the pretty vigorous discussion on the above forum), and any spacecraft that ends up using an EM drive will basically need a substantial onboard nuclear power plant that will need to be developed for such a specific use in space.

The notion of flying through space atop a nuclear reactor shouldn’t be any more scary than all the radiation flying through space outside our hypothetical future moon taxi though, so don’t worry.

 

 

NASA is one step closer to launching its newest spacecraft designed for humans.

NASA's Orion spacecraft, preparing for it's first flight, departs the Neil Armstrong Operations and Checkout Building on its way to the Payload Hazardous Servicing Facility at the Kennedy Space Center, Thursday, Sept. 11, 2014, in Cape Canaveral, Fla. Orion is scheduled for a test flight in early December. (AP Photo/John Raoux)

Workers at Kennedy Space Center gathered to watch as the Orion capsule emerged from its assembly hangar months from its first test flight. The capsule slowly made its way to its fueling depot atop a 36-wheel platform. The capsule and its attached service module and adapter ring stretched 40 feet high. Space center employees lined up along the rope barricade to snap pictures of Orion, NASA’s lofty follow-on to the now-retired space shuttle program.

During its test flight, the unmanned capsule will shoot more than 3,600 miles into space and take two big laps around Earth before re-entering the atmosphere at 20,000 mph and parachuting into the Pacific off the San Diego coast.

NASA's Orion spacecraft, preparing for it's …

The second Orion flight won’t occur until around 2018 when another unmanned capsule soars atop NASA’s new mega-rocket, still under development, called SLS for Space Launch System. NASA intends to put astronauts aboard Orion in 2021 for deep space exploration; each capsule can accommodate up to four astronauts. The plan is to use Orion for getting humans to asteroids and Mars .There will be no space station ferry trips for Orion.

While Orion may resemble an oversize Apollo capsule on the outside, everything inside and out is modern and top-of-the-line. For Orion’s dry run, the  capsule will have hunks of aluminum in place of seats for ballast, and simulators instead of actual cockpit displays. A Delta IV rocket will do the heavy lifting.

NASA's Orion spacecraft, preparing for it's …

Orion has its roots in the post-Columbia shuttle era; it originated a decade ago as a crew exploration vehicle to get astronauts beyond low Earth orbit and managed to survive the cancellation of the Constellation moon project. The Constellation project was the completion of the International Space Station and a return to the moon no later than 2020 with the planet  Mars as the ultimate goal.

Wow ! Some people want free advertisement on my website but don’t have the decency to check my advertisers, so I can make money Too.   So  UnAmerican    !!! 1     

 

 

 

 

 

 

 

Orion Spacecraft Comes Together

The world’s largest heat shield, measuring 16.5 feet in diameter, has been successfully attached to the Orion spacecraft. The heat shield is made from a single seamless piece of Avcoat ablator. It will be tested on Orion’s first flight in December 2014 as it protects the spacecraft from temperatures reaching 4000 degrees Fahrenheit.

The uncrewed flight, dubbed Exploration Flight Test-1(EFT-1), will test the spacecraft for eventual missions that will send astronauts to an asteroid and eventually Mars. 

The Orion crew module for Exploration Flight Test-1 is shown in the Final Assembly and System Testing (FAST) Cell, positioned over the service module just prior to mating the two sections together. The FAST cell is where the integrated crew and service modules are put through their final system tests prior to rolling out of the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. Technicians are in position to assist with the final alignment steps once the crew module is nearly in contact with the service module. In December, Orion will launch 3,600 miles into space in a four-hour flight to test the systems that will be critical for survival in future human missions to deep space.

Image Credit: NASA/Rad Sinyak

 

The Tractor Beam Is Progressing Toward Solid Reality

Spaceship

The tractor beam featured in popular science fiction movies and shows such as “Star Trek,” “Star Wars,” and even the sci-fi parody film “Spaceballs,” is a fictional device that is steadily progressing towards solid reality.

On screen, the tractor beam is a beam of light or energy that is used to hold or manipulate the trajectory of another object. In “Star Trek,” the tractor beam is often used by the starship Enterprise to capture or tow other ships.

With the advancement of lasers and other technology, scientists have been optimistically hustling to create this kind of technology and a variety of different approaches have been tested in the laboratory.

One of the more recent developments involves using an ultrasound beam to pull small, hollow, triangular objects back towards the source of the beam. It’s been developed by Scottish scientists and physicists at Dundee University.

“We were able to show that you could exert sufficient force on an object around centimeter [about 0.4 inches] in size to hold or move it, by directing twin beams of energy from the ultrasound array towards the back of the object,” said Dr. Christine Demore of the Dundee University’s Institute for Medical Science and Technology told the Daily Mail Online.

Although the device is far from the pulling power of the U.S.S. Enterprise or the Death Star, it can still pull objects a million times larger than previous tractor beam designs that specialize in pulling or sorting particles, and it works with a billion times more force.

The practical uses for such a device include medical applications and cancer treatment. For example, using this technology, a capsule could be gently moved towards the site of a tumor and strategically released.

NASA, on the other hand, has been working with tractor beams for a few years now. Back in 2011, NASA’s Office of the Chief Technologist (OCT) received a relatively large grant to study and develop three methods of using lasers to collect particles, trap them, and deposit them were needed for analysis. The process is nearly identical in use to Star Trek’s tractor beam. However, these tractor beams at this time can only manipulate small particles.

*Illustration of a spaceship via Shutterstock